度相关性和社团结构
度分布尽管是网络的一个重要拓扑特征,但是不能由它唯-一地刻画一个网络,因为具有相同度分布的两个网络可能具有非常不同的其他性质或行为。为了进一步刻画网络的拓扑结构,我们需要考虑包含更多结构信息的高阶拓扑特性。本章介绍刻画网络的二阶度分布特性(也称度相关性)的几种不同的方法,包括最为一般但较为复杂的联合概率分布、更为简洁但不宜比较的条件概率和余平均度以及可以定量刻画度相关性但过于粗略的相关系数。 度分布尽管是网络的一个重要拓扑特征,但是不能由它唯-一地刻画一个网络,因为具有相同度分布的两个网络可能具有非常不同的其他性质或行为.为了进--步刻画网络的拓扑结构,我们需要考虑包含更多结构信息的高阶拓扑特性.本章介绍刻画网络的二阶度分布特性(也称度相关性)的几种不同的方法,包括最为一般但较为复杂的联合概率分布、更为简洁但不宜比较的条件概率和余平均度以及可以定量刻画度相关性但过于粗略的相关系数.
1 度相关性与同配
1.1 高阶度分布的引入
0阶度分布特性:
1阶度分布特性:
以下介绍三种2阶度分布特性
1.2 联合概率分布
联合概率P(j,k)定义为网络中随机选取的一条边的两个端点的度分别为j和k的概率,即为网络中度为j的节点和度为k的节点之间存在的边数占网络总边数的比例:
1.3 余平均度
1.4 同配系数 (度相关系数)
1.5 同配系数的一般化
从更为一般的角度看,同配就是指属性相近的节点倾向于互相连接。这里的属性可以是节点的度值,但也可以是我们感兴趣的其他特性。
关于社会网络的同质性有两种基本的解释:
一是选择(Selection),即人们倾向于和相似的人成为朋友,所谓“物以类聚,人以群分”;
二是影响( Influence),即人们由于成为朋友而互相影响,从而变得更为相似,所谓“近朱者赤,近墨者黑”。
2 社团结构与模块度
2.1 社团结构的描述
图4-7所示的中学生朋友关系网络还揭示了该网络的社团结构性质:整个网络包含4个社团,每个社团内部的节点之间的连接相对较为紧密,各个社团之间的连接相对来说比较稀疏。随着对网络性质的深入研究,人们发现许多实际网络都具有较为明显的社团结构,如图4-9所示。
2.2 模块度
模块度(Modularity)是近年常用的一种衡量社团划分质量的标准,其基本想法是把划分社团后的网络与相应的零模型(Null model)进行比较,以度量社团划分的质量。
所谓与一个网络对应的零模型,就是指与该网络具有某些相同的性质(如相同的边数或者相同的度分布等)而在其他方面完全随机的随机图模型。
2.3 加权和有向网络的模块度
4 基于模块度的社团检测算法
4.1 CNM算法
4.2 层次化社团检测
Blondel等人基于模块度概念提出了一种能够用于加权网络的层次化社团结构分析的凝聚算法,简称为BGLL算法。算法分为两个阶段:
4.3 多片网络社团检测
模块度的概念可以推广用于随时间演化的动态网络(Time-dependentnetwork)、具有多种连接形式的多元网络(Multiplex network )以及具有不同尺度社团结构的多尺度网络(Multiscale network )。一种统一的处理办法就是把这些网络表示为如图4-15所示的多片网络(Multislice networks)""。其中,同一片上的节点之间的连接用实线表示,位于不同片的同一个节点之间用虚线连接。
根据片与片之间的关系,我们可以把多片网络分为如下两类:
(1)一类是各片之间有先后次序关系的多片网络。
(2)另一类是各片之间并无先后次序关系的多片网络。
4.4 空间网络社团检测