题一
1.偶数分量相加:∑i=1nX2i.\sum_{i = 1}^{n}\mathbf{X}_{2i}.i=1∑nX2i.
2. 偶数之和:∑i=1n2i\sum_{i=1}^n2ii=1∑n2i
2.1到10的奇数累乘:∏i=1102i−1\prod_{i = 1}^{10}2 i -1i=1∏102i−1
2.积分表达式:∫010x2+xdx\int_{0}^{10} x^2 + x \mathrm{d}x∫010x2+xdx
3.三重累加:∑i=1n∑j=1i∑k=1j1\sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^j1i=1∑nj=1∑ik=1∑j1
4.计算∫010x2+xdx.\int_{0}^{10} x^2 + x \mathrm{d}x.∫010x2+xdx.
手算:≈383.33\approx383.33≈383.33
程序计算:
#include<stdio.h>
int main(){
double delta =0.01;
double ret = 0.0;
for(double i =0;i<=10;i+=delta){
ret += (i*i+i)*delta;
}
printf("%lf",ret);
return 0;
}
5.自己写例子,验证最小二乘法.
令 X=[231]\mathbf{X}=\begin{bmatrix} 2 \\ 3 \\1 \end{bmatrix}X=⎣⎡231⎦⎤,Y=[342]\mathbf{Y}=\begin{bmatrix} 3 \\ 4 \\2\end{bmatrix}Y=⎣⎡342⎦⎤
w=(XTX)−1XTY=1.43\mathbf{w}=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}=1.43w=(XTX)−1XTY=1.43