这几天关于Manus的新闻铺天盖地,于是研究了一下AI智能体的实现思路,发现Openai 的OpenAI Operator智能体已经实现了很强的功能,但是每月200美金的价格高不可攀,而Manus的邀请码据说炒到了几万块!就想能不能求助人工智能,让它指导我自己写一个。把我的问题抛给了豆包、Deepseek、Claude,我的问题如下:
如何使用大语言模型API开发一个类似OpenAI Operator这样的智能体实现本地电脑自动化操作?
豆包、Deepseek虽然也给出了实现思路和程序样本,但是发现Claude的回复要专业得多,文档深度和程序结构都非常清晰,代码更容易落地执行,实在是太强悍太厉害了!所以分享出来。下面是Claude生成的回复内容和对应文档:
我可以帮你了解如何使用大语言模型API开发一个类似于OpenAI Operator的智能体,实现本地电脑自动化操作。
开发智能体自动化系统架构 要实现这样的自动化智能体,你需要构建几个关键组件:与大语言模型的接口 本地操作系统交互层 工具集成框架 状态管理和上下文追踪 安全性控制
让我为你创建一个详细的开发指南:
LLM驱动的本地自动化智能体开发指南
系统架构概述
开发一个类似OpenAI Operator的本地自动化智能体需要几个核心组件协同工作:
希望这个指南能帮助你开始构建自己的本地自动化智能体!
用户 ↔ 界面层 ↔ 核心控制器 ↔ LLM API
↕
工具管理器
↕
本地系统接口 / 外部集成
1. 核心组件
1.1 LLM接口层
这一层负责与大语言模型API通信:
import anthropic # 或其他LLM提供商的SDK
class LLMInterface:
def __init__(self, api_key, model="claude-3-7-sonnet-20250219"):
self.client = anthropic.Anthropic(api_key=api_key)
self.model = model
self.history = []
def query(self, prompt, system_prompt=None, tools=None):
# 构建消息历史
messages = self.history + [{
"role": "user", "content": prompt}]
# 添加工具定义(如果有)
if tools:
response = self.client.messages.create(
model=self.model,
messages=messages,
system=system_prompt,
tools=tools,
tool_choice="auto"
)
else:
response = self.client.messages.create(
model=self.model,
messages=messages,
system=system_prompt
)
# 更新历史
self.history.append({
"role": "user", "content": prompt})
self.history.append({
"role": "assistant", "content": response.content})
return response
1.2 工具管理器
这个组件管理可用于自动化的各种工具:
class ToolManager:
def __init__(self):
self.tools = {
}
def register_tool(self, name, description, function, parameters_schema):
"""注册一个新工具"""
self.tools[name] = {
"name": name,
"description": description,
"function": function,
"parameters_schema": parameters_schema
}
def execute_tool(self, tool_name, parameters):
"""执行指定工具"""
if tool_name not in self.tools:
return {
"error": f"Tool {
tool_name} not found"}
try:
result = self.tools[tool_name]["function"](**parameters)
return {
"result": result}
except Exception as e:
return {
"error": str(e)}
def get_tools_schema(self):
"""返回所有工具的schema定义,用于LLM的工具调用"""
return [
{
"type": "function",
"function": {
"name": tool["name"],
"description": tool["description"],
"parameters": tool["parameters_schema"]
}
}
for tool in self.tools.values()
]
1.3 本地系统接口
这一层负责执行具体的本地系统操作:
import os
import subprocess
import pyautogui
import platform
import psutil
class SystemInterface:
def __init__(self):
self.os_type = platform.system()
def execute_command(self, command):
"""执行Shell命令"""
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return {
"stdout": result.stdout,
"stderr": result.stderr,
"return_code": result.returncode
}
except Exception as e:
return {
"error": str(e)}
def list_files(self, path="."):
"""列出指定目录下的文件"""
try:
files = os.listdir(path)
return {
"files": files}
except Exception as e:
return {
"error": str(e)}
def get_system_info(self):
"""获取系统信息"""
return {
"os": self.os_type,
"cpu_percent": psutil.cpu_percent