如何借助人工智能AI模型开发一个类似OpenAI Operator的智能体实现电脑自动化操作?

这几天关于Manus的新闻铺天盖地,于是研究了一下AI智能体的实现思路,发现Openai 的OpenAI Operator智能体已经实现了很强的功能,但是每月200美金的价格高不可攀,而Manus的邀请码据说炒到了几万块!就想能不能求助人工智能,让它指导我自己写一个。把我的问题抛给了豆包、Deepseek、Claude,我的问题如下:

如何使用大语言模型API开发一个类似OpenAI Operator这样的智能体实现本地电脑自动化操作?

豆包、Deepseek虽然也给出了实现思路和程序样本,但是发现Claude的回复要专业得多,文档深度和程序结构都非常清晰,代码更容易落地执行,实在是太强悍太厉害了!所以分享出来。下面是Claude生成的回复内容和对应文档:

我可以帮你了解如何使用大语言模型API开发一个类似于OpenAI Operator的智能体,实现本地电脑自动化操作。
开发智能体自动化系统架构 要实现这样的自动化智能体,你需要构建几个关键组件:

与大语言模型的接口 本地操作系统交互层 工具集成框架 状态管理和上下文追踪 安全性控制

让我为你创建一个详细的开发指南:

LLM驱动的本地自动化智能体开发指南

系统架构概述

开发一个类似OpenAI Operator的本地自动化智能体需要几个核心组件协同工作:
希望这个指南能帮助你开始构建自己的本地自动化智能体!
用户 ↔ 界面层 ↔ 核心控制器 ↔ LLM API

工具管理器

本地系统接口 / 外部集成

1. 核心组件

1.1 LLM接口层

这一层负责与大语言模型API通信:

import anthropic  # 或其他LLM提供商的SDK

class LLMInterface:
    def __init__(self, api_key, model="claude-3-7-sonnet-20250219"):
        self.client = anthropic.Anthropic(api_key=api_key)
        self.model = model
        self.history = []
    
    def query(self, prompt, system_prompt=None, tools=None):
        # 构建消息历史
        messages = self.history + [{
   
   "role": "user", "content": prompt}]
        
        # 添加工具定义(如果有)
        if tools:
            response = self.client.messages.create(
                model=self.model,
                messages=messages,
                system=system_prompt,
                tools=tools,
                tool_choice="auto"
            )
        else:
            response = self.client.messages.create(
                model=self.model,
                messages=messages,
                system=system_prompt
            )
        
        # 更新历史
        self.history.append({
   
   "role": "user", "content": prompt})
        self.history.append({
   
   "role": "assistant", "content": response.content})
        
        return response

1.2 工具管理器

这个组件管理可用于自动化的各种工具:

class ToolManager:
    def __init__(self):
        self.tools = {
   
   }
    
    def register_tool(self, name, description, function, parameters_schema):
        """注册一个新工具"""
        self.tools[name] = {
   
   
            "name": name,
            "description": description,
            "function": function,
            "parameters_schema": parameters_schema
        }
    
    def execute_tool(self, tool_name, parameters):
        """执行指定工具"""
        if tool_name not in self.tools:
            return {
   
   "error": f"Tool {
     
     tool_name} not found"}
        
        try:
            result = self.tools[tool_name]["function"](**parameters)
            return {
   
   "result": result}
        except Exception as e:
            return {
   
   "error": str(e)}
    
    def get_tools_schema(self):
        """返回所有工具的schema定义,用于LLM的工具调用"""
        return [
            {
   
   
                "type": "function",
                "function": {
   
   
                    "name": tool["name"],
                    "description": tool["description"],
                    "parameters": tool["parameters_schema"]
                }
            }
            for tool in self.tools.values()
        ]

1.3 本地系统接口

这一层负责执行具体的本地系统操作:

import os
import subprocess
import pyautogui
import platform
import psutil

class SystemInterface:
    def __init__(self):
        self.os_type = platform.system()
    
    def execute_command(self, command):
        """执行Shell命令"""
        try:
            result = subprocess.run(command, shell=True, capture_output=True, text=True)
            return {
   
   
                "stdout": result.stdout,
                "stderr": result.stderr,
                "return_code": result.returncode
            }
        except Exception as e:
            return {
   
   "error": str(e)}
    
    def list_files(self, path="."):
        """列出指定目录下的文件"""
        try:
            files = os.listdir(path)
            return {
   
   "files": files}
        except Exception as e:
            return {
   
   "error": str(e)}
    
    def get_system_info(self):
        """获取系统信息"""
        return {
   
   
            "os": self.os_type,
            "cpu_percent": psutil.cpu_percent
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跨境IT全栈工程师

觉得有帮助,赏点鼓励下呀

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值