【计算机图形学|直线生成算法】Bresenham画法详解

概述

Bresenham画法是一种用于计算计算机图形中线条的算法,其原理是沿着所需绘制的线段中的像素点进行递增或递减,来进行准确的点阵绘制。

实现该算法的关键在于确定像素在基准线上的位置,以及在每次迭代时进行相应的调整。该算法比传统的直线算法更快且更准确,在低速处理器和低效内存设备上尤其适用。

Bresenham画法的思想可以拓展到曲线绘制、圆形绘制等其他图像绘制领域。

一、判别式推导

假设直线的表达式为 y = m x + b y = mx + b y=mx+b,并且线段 A D AD AD 与线段 T S TS TS 相交于点 M M M T M TM TM 的长度为 t t t M S MS MS 的长度为 s s s。实现算法需要计算 s s s t t t 的大小关系来确定选择上点或者下点。

在这里插入图片描述
对于M点以及s与t的大小关系分析得出:

如果给定点 ( x i , y i ) (x_i, y_i) (xi,yi) 和点 ( x i + 1 , y i + 1 ) (x_{i+1}, y_{i+1}) (xi+1,yi+1),使用直线方程式 y = m x + b y = mx + b y=mx+b。那么,点 ( x i + 1 , y i + 1 ) (x_{i+1}, y_{i+1}) (xi+1,yi+1) 的坐标可以表示为:

x i + 1 = x i + 1 y i + 1 = m ( x i + 1 ) + b x_{i+1} = x_i + 1 \\ y_{i+1} = m(x_i + 1) + b xi+1=xi+1yi+1=m(xi+1)+b

此时,点 P P P 的坐标为 ( x i , y i ) (x_i, y_i) (xi,yi),点 S S S 的坐标为 ( x i , y i + 1 ) (x_i, y_i+1) (xi,yi+1),点 T T T 的坐标为 ( x i + 1 , y i + 1 ) (x_i+1, y_i+1) (xi+1,yi+1)

我们需要计算 s s s t t t 的值来判断绘制线段的方向

首先, s s s 的值为:

s = y i + 1 − y i = m ( x i + 1 ) + b − ( m x i + b ) = m s = y_{i+1} - y_i = m(x_i + 1) + b - (mx_i + b) = m s=yi+1yi=m(xi+1)+b(mxi+b)=m

其次, t t t 的值为:

t = 2 y i + 1 − 2 y i + 2 = 2 ( m ( x i + 1 ) + b ) − 2 ( m x i + b ) + 2 = 2 m ( x i + 1 − x i ) + 2 = 2 m + 2 \begin{aligned} t &= 2y_{i+1} - 2y_i + 2 \\ &= 2(m(x_i + 1) + b) - 2(mx_i + b) + 2 \\ &= 2m(x_i + 1 - x_i) + 2 \\ &= 2m + 2 \end{aligned} t=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱喝冰红茶的方舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值