单位冲激与单位阶跃函数
离散时间
单位脉冲:δ[n]={0, n≠01, n=0 单位脉冲: \delta [n]=\begin{cases} 0,& \text{ } n\ne 0 \\1, & \text{ } n=0 \end{cases} 单位脉冲:δ[n]={0,1, n=0 n=0
单位阶跃:u[n]={0, n<01, n≥0 单位阶跃: u [n]=\begin{cases} 0,& \text{ } n< 0 \\1, & \text{ } n\ge 0 \end{cases} 单位阶跃:u[n]={0,1, n<0 n≥0
单位脉冲和单位阶跃的关系:
δ[n]=u[n]−u[n−1] \delta [n]=u[n]-u[n-1] δ[n]=u[n]−u[n−1]
u[n]=∑m=−∞nδ[m] u[n]=\sum_{m=-\infty }^{n} \delta [m] u[n]=m=−∞∑nδ[m]
单位脉冲的采样性质
x[n]δ[n−n0]=x[n0]δ[n−n0] x[n]\delta [n-n_{0}]=x[n_{0}]\delta [n-n_{0}] x[n]δ[n−n0]=x[n0]δ[n−n0]
连续时间
单位冲激函数:{∫−∞+∞δ(t)dt=1δ(t)=0, t≠0 单位冲激函数: \begin{cases} \int_{-\infty }^{+\infty } \delta(t)dt=1 & \text{} \\ \delta (t)=0,& \text{ } t\ne 0 \end{cases} 单位冲激函数:{∫−∞+∞δ(t)dt=1δ(t)=0, t=0
单位阶跃函数:u(t)={0, t<01, t>0 单位阶跃函数: u (t)=\begin{cases} 0,& \text{ } t< 0 \\1, & \text{ } t>0 \end{cases} 单位阶跃函数:u(t)={0,1, t<0 t>0
两者关系:
u(t)=∫−∞tδ(τ)dτ u(t)=\int_{- \infty }^{t} \delta (\tau )d\tau u(t)=∫−∞tδ(τ)dτ
令σ=t−τ 令\sigma =t-\tau 令σ=t−τ
u(t)=∫−∞tδ(t−σ)d(t−σ)=∫∞0δ(t−σ)d(−σ) u(t)=\int_{- \infty }^{t} \delta (t- \sigma )d(t- \sigma ) =\int_{ \infty }^{0} \delta (t- \sigma )d(- \sigma ) u(t)=∫−∞tδ(t−σ)d(t−σ)=∫∞0δ(t−σ)d(−σ)
u(t)=∫0∞δ(t−σ)dσ u(t)=\int_{ 0 }^{\infty} \delta (t- \sigma )d \sigma u(t)=∫0∞δ(t−σ)dσ
冲激函数具有类似的采样性质
x(t)δ(t−t0)=x(t0)δ(t−t0) x(t)\delta (t-t_{0})=x(t_{0})\delta (t-t_{0}) x(t)δ(t−t0)=x(t0)δ(t−t0)
卷积的定义及性质
离散时间线性时不变系统
对于任意的离散信号x[n],可以表达为
x[n]=∑k=−∞+∞x[k]δ[n−k] x[n]=\sum_{k=- \infty }^{+ \infty }x[k]\delta [n-k] x[n]=k=−∞∑+∞x[k]δ[n−k]
线性系统对单位脉冲的响应记作h[n],由于线性系统的叠加性,x[n]的响应可表达为
y[n]=∑k=−∞+∞x[k]hk[n] y[n]=\sum_{k=- \infty }^{+ \infty }x[k]h_{k} [n] y[n]=k=−∞∑+∞x[k]hk[n]
式中hk[n]是k时刻单位脉冲的响应 式中h_{k}[n]是k时刻单位脉冲的响应 式中hk[n]是k时刻单位脉冲的响应
对于时不变系统
hk[n]=h0[n−k] h_{k}[n]=h_{0}[n-k] hk[n]=h0[n−k]
式中h0[n]是0时刻单位脉冲的响应 式中h_{0}[n]是0时刻单位脉冲的响应 式中h0[n]是0时刻单位脉冲的响应
因此,对于线性时不变系统
y[n]=∑k=−∞+∞x[k]h[n−k] y[n]=\sum_{k=- \infty }^{+ \infty }x[k]h [n-k] y[n]=k=−∞∑+∞x[k]h[n−k]
使用符号记为
y[n]=x[n]∗h[n] y[n]=x[n]*h[n] y[n]=x[n]∗h[n]
连续时间线性时不变系统
定义:δ△(t)={1△, 0≤t<△0, 其他 定义:\delta _{\triangle } (t)=\begin{cases} \frac{1}{\triangle} ,& \text{ } 0\le t< \triangle \\ 0,& \text{ } 其他 \end{cases} 定义:δ△(t)={△1,0, 0≤t<△ 其他
定义:x^(t)=∑k=−∞+∞x(k△)δ△(t−k△)△ 定义:\hat{x} (t)=\sum_{k=-\infty }^{+\infty } x(k\triangle )\delta _{\triangle } (t-k\triangle)\triangle 定义:x^(t)=k=−∞∑+∞x(k△)δ△(t−k△)△
则,x(t)=lim△→0x^(t) 则,x(t)=\lim_{\triangle \to 0} \hat{x} (t) 则,x(t)=△→0limx^(t)
由此可以得到
x(t)=∫−∞+∞x(τ)δ(t−τ)dτ x(t)=\int_{- \infty }^{+ \infty } x(\tau )\delta (t-\tau )\mathrm{d}\tau x(t)=∫−∞+∞x(τ)δ(t−τ)dτ
同理可以得到线性时不变系统的卷积积分表达式
y(t)=∫−∞+∞x(τ)h(t−τ)dτ y(t)=\int_{- \infty }^{+ \infty } x(\tau )h (t-\tau )\mathrm{d}\tau y(t)=∫−∞+∞x(τ)h(t−τ)dτ
使用符号记为
y(t)=x(t)∗h(t) y(t)=x(t)*h(t) y(t)=x(t)∗h(t)
线性时不变系统的卷积性质
交换律:{x[n]∗h[n]=h[n]∗x[n],离散系统x(t)∗h(t)=h(t)∗x(t),连续系统 交换律:\begin{cases} x[n]*h[n]=h[n]*x[n], 离散系统\\ x(t)*h(t)=h(t)*x(t), 连续系统 \end{cases} 交换律:{x[n]∗h[n]=h[n]∗x[n],离散系统x(t)∗h(t)=h(t)∗x(t),连续系统
分配律:{x[n]∗(h1[n]+h2[n])=x[n]∗h1[n]+x[n]∗h2[n],离散系统x(t)∗[h1(t)+h2(t)]=x(t)∗h1(t)+x(t)∗h2(t),连续系统 分配律:\begin{cases} x[n]*(h_{1}[n]+h_{2}[n])=x[n]*h_{1}[n]+x[n]*h_{2}[n], 离散系统\\ x(t)*[h_{1}(t)+h_{2}(t)]=x(t)*h_{1}(t)+x(t)*h_{2}(t), 连续系统 \end{cases} 分配律:{x[n]∗(h1[n]+h2[n])=x[n]∗h1[n]+x[n]∗h2[n],离散系统x(t)∗[h1(t)+h2(t)]=x(t)∗h1(t)+x(t)∗h2(t),连续系统
结合律:{x[n]∗(h1[n]∗h2[n])=(x[n]∗h1[n])∗h2[n],离散系统x(t)∗[h1(t)∗h2(t)]=(x(t)∗h1(t))∗h2(t),连续系统 结合律:\begin{cases} x[n]*(h_{1}[n]*h_{2}[n])=(x[n]*h_{1}[n])*h_{2}[n], 离散系统\\ x(t)*[h_{1}(t)*h_{2}(t)]=(x(t)*h_{1}(t))*h_{2}(t), 连续系统 \end{cases} 结合律:{x[n]∗(h1[n]∗h2[n])=(x[n]∗h1[n])∗h2[n],离散系统x(t)∗[h1(t)∗h2(t)]=(x(t)∗h1(t))∗h2(t),连续系统