冲激函数与卷积

单位冲激与单位阶跃函数
离散时间

单位脉冲:δ[n]={0, n≠01, n=0 单位脉冲: \delta [n]=\begin{cases} 0,& \text{ } n\ne 0 \\1, & \text{ } n=0 \end{cases} 单位脉冲:δ[n]={0,1, n=0 n=0

单位阶跃:u[n]={0, n<01, n≥0 单位阶跃: u [n]=\begin{cases} 0,& \text{ } n< 0 \\1, & \text{ } n\ge 0 \end{cases} 单位阶跃:u[n]={0,1, n<0 n0

单位脉冲和单位阶跃的关系:

δ[n]=u[n]−u[n−1] \delta [n]=u[n]-u[n-1] δ[n]=u[n]u[n1]

u[n]=∑m=−∞nδ[m] u[n]=\sum_{m=-\infty }^{n} \delta [m] u[n]=m=nδ[m]

单位脉冲的采样性质

x[n]δ[n−n0]=x[n0]δ[n−n0] x[n]\delta [n-n_{0}]=x[n_{0}]\delta [n-n_{0}] x[n]δ[nn0]=x[n0]δ[nn0]

连续时间

单位冲激函数:{∫−∞+∞δ(t)dt=1δ(t)=0, t≠0 单位冲激函数: \begin{cases} \int_{-\infty }^{+\infty } \delta(t)dt=1 & \text{} \\ \delta (t)=0,& \text{ } t\ne 0 \end{cases} 单位冲激函数:{+δ(t)dt=1δ(t)=0, t=0

单位阶跃函数:u(t)={0, t<01, t>0 单位阶跃函数: u (t)=\begin{cases} 0,& \text{ } t< 0 \\1, & \text{ } t>0 \end{cases} 单位阶跃函数:u(t)={0,1, t<0 t>0

两者关系:

u(t)=∫−∞tδ(τ)dτ u(t)=\int_{- \infty }^{t} \delta (\tau )d\tau u(t)=tδ(τ)dτ

令σ=t−τ 令\sigma =t-\tau σ=tτ

u(t)=∫−∞tδ(t−σ)d(t−σ)=∫∞0δ(t−σ)d(−σ) u(t)=\int_{- \infty }^{t} \delta (t- \sigma )d(t- \sigma ) =\int_{ \infty }^{0} \delta (t- \sigma )d(- \sigma ) u(t)=tδ(tσ)dtσ=0δ(tσ)d(σ)

u(t)=∫0∞δ(t−σ)dσ u(t)=\int_{ 0 }^{\infty} \delta (t- \sigma )d \sigma u(t)=0δ(tσ)dσ

冲激函数具有类似的采样性质

x(t)δ(t−t0)=x(t0)δ(t−t0) x(t)\delta (t-t_{0})=x(t_{0})\delta (t-t_{0}) x(t)δ(tt0)=x(t0)δ(tt0)

卷积的定义及性质

离散时间线性时不变系统

对于任意的离散信号x[n],可以表达为

x[n]=∑k=−∞+∞x[k]δ[n−k] x[n]=\sum_{k=- \infty }^{+ \infty }x[k]\delta [n-k] x[n]=k=+x[k]δ[nk]

线性系统对单位脉冲的响应记作h[n],由于线性系统的叠加性,x[n]的响应可表达为

y[n]=∑k=−∞+∞x[k]hk[n] y[n]=\sum_{k=- \infty }^{+ \infty }x[k]h_{k} [n] y[n]=k=+x[k]hk[n]

式中hk[n]是k时刻单位脉冲的响应 式中h_{k}[n]是k时刻单位脉冲的响应 式中hk[n]k时刻单位脉冲的响应

对于时不变系统

hk[n]=h0[n−k] h_{k}[n]=h_{0}[n-k] hk[n]=h0[nk]

式中h0[n]是0时刻单位脉冲的响应 式中h_{0}[n]是0时刻单位脉冲的响应 式中h0[n]0时刻单位脉冲的响应

因此,对于线性时不变系统

y[n]=∑k=−∞+∞x[k]h[n−k] y[n]=\sum_{k=- \infty }^{+ \infty }x[k]h [n-k] y[n]=k=+x[k]h[nk]

使用符号记为

y[n]=x[n]∗h[n] y[n]=x[n]*h[n] y[n]=x[n]h[n]

连续时间线性时不变系统

定义:δ△(t)={1△, 0≤t<△0, 其他 定义:\delta _{\triangle } (t)=\begin{cases} \frac{1}{\triangle} ,& \text{ } 0\le t< \triangle \\ 0,& \text{ } 其他 \end{cases} 定义:δ(t)={1,0, 0t< 其他

定义:x^(t)=∑k=−∞+∞x(k△)δ△(t−k△)△ 定义:\hat{x} (t)=\sum_{k=-\infty }^{+\infty } x(k\triangle )\delta _{\triangle } (t-k\triangle)\triangle 定义:x^(t)=k=+x(k)δ(tk)

则,x(t)=lim⁡△→0x^(t) 则,x(t)=\lim_{\triangle \to 0} \hat{x} (t) 则,x(t)=0limx^(t)

由此可以得到

x(t)=∫−∞+∞x(τ)δ(t−τ)dτ x(t)=\int_{- \infty }^{+ \infty } x(\tau )\delta (t-\tau )\mathrm{d}\tau x(t)=+x(τ)δ(tτ)dτ

同理可以得到线性时不变系统的卷积积分表达式

y(t)=∫−∞+∞x(τ)h(t−τ)dτ y(t)=\int_{- \infty }^{+ \infty } x(\tau )h (t-\tau )\mathrm{d}\tau y(t)=+x(τ)h(tτ)dτ

使用符号记为

y(t)=x(t)∗h(t) y(t)=x(t)*h(t) y(t)=x(t)h(t)

线性时不变系统的卷积性质

交换律:{x[n]∗h[n]=h[n]∗x[n],离散系统x(t)∗h(t)=h(t)∗x(t),连续系统 交换律:\begin{cases} x[n]*h[n]=h[n]*x[n], 离散系统\\ x(t)*h(t)=h(t)*x(t), 连续系统 \end{cases} 交换律:{x[n]h[n]=h[n]x[n],离散系统x(t)h(t)=h(t)x(t),连续系统

分配律:{x[n]∗(h1[n]+h2[n])=x[n]∗h1[n]+x[n]∗h2[n],离散系统x(t)∗[h1(t)+h2(t)]=x(t)∗h1(t)+x(t)∗h2(t),连续系统 分配律:\begin{cases} x[n]*(h_{1}[n]+h_{2}[n])=x[n]*h_{1}[n]+x[n]*h_{2}[n], 离散系统\\ x(t)*[h_{1}(t)+h_{2}(t)]=x(t)*h_{1}(t)+x(t)*h_{2}(t), 连续系统 \end{cases} 分配律:{x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n],离散系统x(t)[h1(t)+h2(t)]=x(t)h1(t)+x(t)h2(t),连续系统

结合律:{x[n]∗(h1[n]∗h2[n])=(x[n]∗h1[n])∗h2[n],离散系统x(t)∗[h1(t)∗h2(t)]=(x(t)∗h1(t))∗h2(t),连续系统 结合律:\begin{cases} x[n]*(h_{1}[n]*h_{2}[n])=(x[n]*h_{1}[n])*h_{2}[n], 离散系统\\ x(t)*[h_{1}(t)*h_{2}(t)]=(x(t)*h_{1}(t))*h_{2}(t), 连续系统 \end{cases} 结合律:{x[n](h1[n]h2[n])=(x[n]h1[n])h2[n],离散系统x(t)[h1(t)h2(t)]=(x(t)h1(t))h2(t),连续系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值