现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化

机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。在各种语言中,R语言以编程简单,方法先进脱颖而出,本次机器学习基于现代R语言,Tidyverse,Tidymodel语法。

专题一:基础知识

1.Tidymodel,Tidyverse语法精讲

2.机器学习的基本概念

3.机器学习建模过程

4.特征工程

专题二:回归

1.线性回归略谈

2.岭回归

3.偏最小二乘法

4.Lasso回归与最小角度回归

5.弹性网回归

图片

专题三:树形模型

1.分类回归树

2.随机森林

图片

专题四:集成学习

1.梯度提升法

2.装袋法

3.GBM与随机GBM

4. XGBOST

5.总结  

    

图片

专题五:其它方法

1.支持向量机

2.深度学习基础

3.可解释的机器学习

图片

图片

专题六:降维

1.主成分分析

2.广义低秩模型

3.Autoenconders

图片

图片

专题七:聚类与分类

1.K-均值聚类

2.分层聚类

3.K-近邻分类

4.Logistic回归


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值