C语言经典算法之线段树查询

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度:

B.空间复杂度:

三 优缺点

A.优点:

B.缺点:

C.总结

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

tips:文中的(如果有)对数,则均以2为底数

B.简介

线段树是一种用于解决区间查询问题的数据结构,它通过将区间划分成更小的子区间,并在每个节点中存储对应区间的信息,从而实现高效的区间查询和更新操作。

一 代码实现

假设我们要解决的问题是在一个数组中查询某个区间的和。首先,我们需要建立线段树,然后可以对树进行查询操作。

#include <stdio.h>
#include <stdlib.h>

// 线段树节点的定义
typedef struct {
    int start, end;  // 区间的起始和结束位置
    int sum;         // 区间的和
} SegmentTreeNode;

// 构建线段树
SegmentTreeNode* buildSegmentTree(int* arr, int start, int end) {
    if (start > end) {
        return NULL;
    }

    // 创建当前节点
    SegmentTreeNode* node = (SegmentTreeNode*)malloc(sizeof(SegmentTreeNode));
    node->start = start;
    node->end = end;

    // 如果是叶子节点,直接将数组中的值赋给节点
    if (start == end) {
        node->sum = arr[start];
    } else {
        // 如果不是叶子节点,递归构建左右子树,并计算当前节点的和
        int mid = (start + end) / 2;
        node->sum = 0; // 初始化为0
        node->left = buildSegmentTree(arr, start, mid);
        node->right = buildSegmentTree(arr, mid + 1, end);

        // 计算当前节点的和
        if (node->left != NULL) {
            node->sum += node->left->sum;
        }
        if (node->right != N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值