目录
前言
A.建议
1.学习算法最重要的是理解算法的每一步,而不是记住算法。
2.建议读者学习算法的时候,自己手动一步一步地运行算法。
B.简介
ElGamal加密算法是一种非对称加密算法,基于Diffie-Hellman密钥交换协议,并利用了离散对数问题的困难性。
一 代码实现
以下是使用C语言来简要介绍ElGamal加密算法的关键步骤及其伪代码实现框架,由于实际编程实现涉及到大量的数学运算和安全细节,这里仅提供逻辑概览和关键函数设计思路。
A.ElGamal密钥生成:
// 密钥生成函数
void elgamal_keygen(unsigned long *p, unsigned long *g, unsigned long *x, unsigned long *y) {
// 1. 选择一个足够大的素数p,满足p-1有一个大素数因子
*p = select_large_prime_with_large_factor();
// 2. 选择模p下的本原元g
*g = select_primitive_root_mod_p(*p);
// 3. 随机选择一个整数x作为私钥,2 <= x <= p-2
*x = random_in_range(2, *p - 1);
// 4. 计算公钥y = g^x mod p
*y = modular_exponentiation(*g, *x, *p);
}
// 模p下快速幂运算函数
unsigned long modular_exponentiation(unsigned long base, unsigned long exponent, unsigned long modulus) {
// 这里省略具体的快速幂算法实现
}
B.ElGamal加密:
// ElGamal加密函数
void elgamal_encrypt(unsigned long m, unsigned long p, unsigned long g, unsigned long y,
unsigned long *k, unsigned long *c1, unsigned long *c2) {
// 1. 发送方随机选择一个整数k,2 <= k <= p-2
*k = random_in_range(2, p - 1);
// 2. 计算第一部分密文 c1 = g^k mod p
*c1 = modular_exponentiation(g, *k, p);
// 3. 计算第二部分密文 c2 = m * (y^k) mod p
*c2 = (m *