自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(293)
  • 收藏
  • 关注

原创 数据结构—图/无向图/连通图/连通分量/邻接矩阵/表/广度深度遍历

1在下图所示的各无向图中:(1)找出所有的简单环。 (2)哪些图是连通图?对非连通图给出其连通分量。正确答案:(1)所有的简单环:(同一个环可以任一顶点作为起点)   (a)1231   (b)无   ©1231、2342、12341   (d)无(2)连通图:   (a)、©、(d)是连通图,   (b)不是连通图,因为从1到2没有路径。具体连通分量为:   2(1) 该图是强连通的吗? 若不是,则给出其强连通分量。(2) 请给出所有的简单路径及有向环。(3) 请给

2022-01-09 16:36:39 6122 3

原创 数据结构习题-树/完全二叉树/树的度/m次树

1若一棵度为4的树中度为1、2、3、4的结点个数分别为4、3、2、2,则该树的总结点个数是多少?正确答案:答案:结点总数n=n0+n1+n2+n3+n4,又由于除根结点外,每个结点都对应一个分支,所以总的分支数等于n-1。而度为i(0≤i≤4)的结点的分支数为i,所以有:总分支数=n-1=0×n0+1×n1+2×n2+3×n3+4×n4。综合两式得:n0=n2+2n3+3n4+1=3+2×2+3×2=14,则n=n0+n1+n2+n3+n4=14+4+3+2+2=25,所以该树的总结点个数是25。

2022-01-09 15:43:24 5219

原创 树(二叉树)的性质

树(二叉树)的性质一棵结点个数为n、高度为h的m(m≥3)次树中,其分支数是( )A.nhB.n+hC.n-1D.h-1由于二叉树中除了根结点以外,每个结点都有唯一的一个分支指向它,因此二叉树中:总分支数=总结点数-1若一棵度为7的树有7个度为2的结点,有6个度为3的结点,有5个度为4的结点,有4个度为5的结点,有3个度为6的结点,有2个度为7的结点,该树一共有( )个叶子结点A.35B.28C.77D.78根据二叉树的性质,叶子结点数 = 总度数+1 - 非叶子结点总数,即

2021-11-22 23:56:01 8128 4

原创 【大语言模型入门】—— 浅析LLM基座—Transformer原理

本文深入浅出地解析了Transformer架构这一大语言模型的核心基座。文章采用"分层突破法",从经典概率模型入手,逐步拆解Transformer的三大核心组件:Token词表、Embedding向量和Self-Attention机制。作者通过汪星人语言模型的类比,生动诠释了Next Token Prediction的基本原理,并详细剖析了Transformer的模块化架构和矩阵运算本质。文章特别强调,理解输入模块的Embedding向量化和编解码层的矩阵计算流程,是掌握Transfor

2025-06-29 17:07:38 715

原创 【LLM】LightRAG的安装与使用

本文首先介绍了如何从源码快速安装 LightRAG,包括克隆官方 GitHub 仓库、进入项目目录、激活 Conda 环境并通过 `pip install -e .` 方式一键完成本地部署;随后,通过一段完整的 Python 示例演示了 LightRAG 的核心用法:配置工作目录与日志、初始化共享数据、创建支持 Ollama 推理服务的 `LightRAG` 实例(重点说明了 `llm_model_kwargs` 中的 `host` 与 `num_ctx` 设置)、以及调用 `rag.insert` 将文本

2025-06-26 16:21:54 990

原创 【LLM】国内加速安装Ollama并手动构建解决报错

摘要 本文介绍了在国内网络环境下手动安装Ollama的方法。针对自动安装失败的情况,建议通过国内GitHub加速站点下载安装包。文章详细说明了下载、解压和启动Ollama的步骤,并重点解决了服务启动失败的问题。包括创建专用ollama用户、修改目录权限、配置systemd服务文件等关键操作。最后展示了验证安装成功的方法,如查看模型列表等。整个过程解决了国内用户安装Ollama时可能遇到的主要网络和服务配置问题。

2025-06-26 12:10:52 1145

原创 【服务器】教程 — Linux上如何挂载服务器NAS

本教程首先通过浏览器确认 NAS 共享路径,然后在 Linux 服务器上创建本地挂载点,接着使用 CIFS 挂载时指定登录凭据(用户名和密码)、字符集转换(iocharset=utf8)、挂载后归属的用户 ID 和组 ID(uid/gid),并通过 file\_mode=0664 和 dir\_mode=0775 统一设定文件与目录的权限;挂载完成后可通过查看挂载列表或下载测试文件来验证是否成功,若不再需要则可执行卸载操作取消挂载。

2025-06-24 21:44:22 1202

原创 【Overleaf Latex模板】厦门大学课程论文Overleaf Latex模板 中文版

厦门大学课程论文LaTeX模板提供了一套专为中文课程报告设计的排版解决方案。该模板包含封面页、摘要、目录和参考文献等标准学术结构,采用ctexart文档类实现中文排版优化。特色功能包括:可自定义的现代化封面设计(校徽/课程信息)、自动生成的目录页码系统、参考文献自动编号与压缩式引用。用户只需修改模板头部信息即可快速使用,支持XeLaTeX编译和Overleaf在线编辑。模板默认UTF-8编码,提供代码高亮扩展建议,是大学课程作业和实验报告的理想排版工具。

2025-06-07 15:09:49 741

原创 【AI生成PPT】使用ChatGPT+Overleaf自动生成学术论文PPT演示文稿

本文介绍了一种利用ChatGPT、Beamer和LaTeX自动生成学术论文PPT演示文稿的高效方法。通过Beamer的演示文稿文档类和Overleaf的云端LaTeX协作平台,用户可以在10分钟内完成专业排版。核心流程包括从arXiv获取论文源码,使用ChatGPT生成Beamer代码,并在Overleaf上编译生成PDF格式的PPT。生成的PPT包含标题页、研究背景、方法、实验等完整章节,排版简洁专业。该方法显著提升了效率,完美支持公式、算法和参考文献引用,适用于学生和研究人员快速制作学术汇报或会议演示文

2025-05-17 11:49:22 1870

原创 【Deepseek】服务器linux部署Deepseek-R1 671B满血版 — ollama本地部署教程

本文介绍了在Linux服务器上部署Deepseek 671B模型的完整流程,基于Ollama框架和Open-WebUI工具。Ollama安装与配置使用命令安装Ollama,并通过启动服务。通过修改文件,配置环境变量(如和),解决服务启动失败或无法连接的问题。模型运行与API测试使用命令加载Deepseek 671B模型,并通过API接口验证模型响应。Open-WebUI部署。

2025-02-27 19:47:15 1232

原创 Linux安装Java / 修改HuggingFace默认缓存路径 / 使用py脚本导出conda环境的pip依赖包至requirements.txt

【代码】使用py脚本导出conda环境的pip依赖包至requirements.txt。

2025-02-20 13:10:53 342

原创 Windows上同时配置GitHub和Gitee服务

本文详细介绍了在Windows系统上同时配置GitHub和Gitee服务的步骤。首先,通过命令行工具初始化Git配置,设置全局用户名和邮箱,建议使用与GitHub和Gitee相同的邮箱以便统一管理。接着,生成SSH密钥对,分别为GitHub和Gitee创建独立的密钥文件(如和),并将这些文件移动到.ssh目录下。随后,在.ssh目录中创建并编辑config文件,配置GitHub和Gitee的SSH连接信息,确保系统能够正确识别不同的密钥。

2025-01-20 14:39:05 1197

原创 Linux服务器安装 Virtuoso 数据库并导入Freebase 知识图谱数据

本文详细介绍了在Linux服务器上安装Virtuoso数据库并导入Freebase知识图谱数据的步骤。下载Freebase数据集:从Google提供的链接下载Freebase三元组数据,解压后约400G。数据过滤:通过Python脚本过滤Freebase RDF数据,保留符合命名空间、英文文本和XML数据类型的三元组,过滤后数据约为125G。下载并安装Virtuoso:从SourceForge下载Virtuoso数据库,解压并配置环境变量。启动Virtuoso服务。

2025-01-18 13:15:17 1555 3

原创 如何在本地部署大模型并实现接口访问( Llama3、Qwen、DeepSeek等)

本文详细介绍了如何在本地服务器上部署大模型(如DeepSeek、Llama3、Qwen等),并通过接口实现外部调用。首先,从HuggingFace或魔搭网站下载模型,使用git lfs和screen确保大文件完整下载;接着,使用FastAPI封装模型推理过程,支持多GPU运行并通过CUDA_VISIBLE_DEVICES指定显卡,提供完整的app.py代码实现模型加载和接口响应;然后,通过conda创建Python 3.10环境并安装依赖,使用nohup后台运行服务;最后,展示如何通过Postman或代码调

2025-01-11 14:53:36 13965 1

原创 【深度学习】— 多输入多输出通道、多通道输入的卷积、多输出通道、1×1 卷积层、汇聚层、多通道汇聚层

在处理多通道输⼊数据时,汇聚层在每个输⼊通道上单独运算,⽽不是像卷积层⼀样在通道上对输⼊进⾏汇总。这意味着汇聚层的输出通道数与输⼊通道数相同• 对于给定输⼊元素,最⼤汇聚层会输出该窗⼝内的最⼤值,平均汇聚层会输出该窗⼝内的平均值。• 汇聚层的主要优点之⼀是减轻卷积层对位置的过度敏感。• 我们可以指定汇聚层的填充和步幅。• 使⽤最⼤汇聚层以及⼤于1的步幅,可减少空间维度(如⾼度和宽度)。• 汇聚层的输出通道数与输⼊通道数相同。

2024-11-05 17:53:41 950 1

原创 【深度学习】—图像数据与卷积神经网络简介、从全连接层到卷积层、多层感知机的限制与卷积的引入、学习卷积核、填充和步幅

在之前的章节中,我们讨论了图像数据,每个样本是一个二维像素网格。然而,将图像展平成一维向量并输入全连接神经网络的方式,忽略了图像的空间结构信息,未能充分利用像素间的关联性。卷积神经网络(CNN)是一种专为处理图像数据设计的强大模型。CNN 在计算机视觉中占据主导地位,是图像识别、目标检测和语义分割等应用的核心。相比全连接网络,CNN 参数更少,适合 GPU 并行计算,计算效率高,因此广受从业者青睐。近年来,CNN 也在音频、文本和时间序列等一维序列任务中展现出优势。

2024-11-05 16:52:00 828

原创 【深度学习】实验 — 动手实现 GPT【四】:代码实现Transformer、代码实现GPT模型、训练大型语言模型(LLM)

例如,Llama 2 7B 的训练需要在 A100 GPU 上使用 184,320 小时,处理 2 万亿个词元。我们使用相对较小的数据集来训练 LLM(实际上只有一个短篇故事)。

2024-11-01 10:37:50 978

原创 【深度学习】实验 — 动手实现 GPT【三】:LLM架构、LayerNorm、GELU激活函数

像 GPT 和 Llama 这样的模型是基于原始 Transformer 架构的解码器部分,按顺序生成词。因此,这些 LLM 通常被称为“类似解码器”的 LLM。与传统的深度学习模型相比,LLM 更大,主要原因在于其庞大的参数数量,而非代码量。我们会看到,在 LLM 架构中许多元素是重复的。我们考虑的嵌入和模型大小类似于小型 GPT-2 模型。我们将具体实现最小的 GPT-2 模型(1.24 亿参数)的架构,参考 Radford 等人发表的。

2024-10-31 15:57:43 1042

原创 【深度学习】实验 — 动手实现 GPT【二】:注意力机制、注意力掩码、多头注意力机制

(在本书中,我们遵循机器学习和深度学习的常见惯例,即训练样本表示为行,特征值表示为列;在上面的张量中,每一行表示一个词,每一列表示一个嵌入维度。(请注意,此图中的数字已截取至小数点后两位,以减少视觉杂乱;同样,其他图中的数字也被截取。在自注意力机制中,首先计算注意力分数,随后对其进行归一化以得出总和为 1 的注意力权重。接下来,我们将推广该计算,以求得所有的注意力权重和上下文向量。然后,这些注意力权重被用于通过输入的加权求和生成上下文向量。上面我们计算了输入 2 的注意力权重和上下文向量。

2024-10-31 15:13:59 876

原创 【深度学习】实验 — 动手实现 GPT【一】:分词模型、词嵌入与位置编码

模型的输入是张量,那么文本的字符串如何转换为张量呢?答案是tokenizing text 和 word embeddings(标记文本和词嵌入)。让我们一步一步地了解它们。在本节中,我们将文本词元化,这意味着将文本分解为更小的单元,例如单个单词和标点符号。让我们基于一些简单的示例文本开发一个简单的tokenizer,然后我们可以将其应用于上面的文本以下正则表达式将在空格上拆分输出这非常有效,我们现在准备将此 tokenization 应用于长文本。加载我们打算处理的原始文本。伊迪丝·华顿的判决是

2024-10-31 13:24:47 1206

原创 【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数

我们已经了解了如何使用非线性激活函数(如 ReLU、sigmoid 和 tanh)来构建具有更强表达能力的多层神经网络。值得一提的是,如今借助开源的深度学习框架,只需几行代码即可快速构建模型,而在 20 世纪 90 年代,训练这些网络可能需要数千行 C 或 Fortran 代码。

2024-10-05 19:36:33 2242 2

原创 【深度学习】— 多层感知机介绍、 隐藏层、从线性到非线性、线性模型的局限性

在第 3 节中,我们介绍了 softmax 回归,并实现了其从零开始的实现和基于高级 API 的实现,训练了分类器来识别 10 类服装图像。这种网络共有 2 层,每层都是全连接的,每个输入都会影响隐藏层中的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。最简单的方法是堆叠多个全连接层,每一层的输出作为下一层的输入,最终生成输出。线性模型假设输入特征与输出之间的关系是单调的,例如收入增加会增加偿还贷款的概率,但这种关系不是线性的。个隐藏单元的单隐藏层多层感知机(MLP),隐藏层的输出可以用。

2024-10-05 19:19:55 1436

原创 【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵

社会科学家邓肯·卢斯于 1959 年在选择模型(choice model)的理论基础上发明的 softmax 函数正是这样做的:softmax 函数能够将未规范化的预测变换为⾮负数并且总和为 1,同时让模型保持可导的性质。为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。举例来说,如果数据流中的所有数据完全相同,它们是无聊且可预测的,因此无需传递额外信息,因为下一个数据是确定的。在我们的例子中,标签。为底的单位,与比特(bit)的区别在于比特使用的是以 2 为底的对数。

2024-10-05 19:02:26 1170

原创 【深度学习】—线性回归 线性回归的基本元素 线性模型 损失函数 解析解 随机梯度下降

为了解释线性回归,我们举一个实际的例子:我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。每行数据(比如一次房屋交易相对应的数据)称为样本(sample),也可以称为数据点(data point)或数据样本(data instance)。损失函数(loss function)用于量化目标的真实值与预测值之间的差距,通常是一个非负数,数值越小表示模型预测越准确,完美预测时损失为 0。实际上,在许多任务中,那些难以优化的模型往往表现得更好,因此,学会如何训练这些难以优化的模型非常重要。

2024-09-28 21:10:22 1155

原创 【深度学习】—— 自动微分、非标量变量的反向传播、 分离计算、 Python控制流的梯度计算

然而,虽然这些更奇特的对象确实出现在高级机器学习中(包括深度学习中),但当我们调用向量的反向计算时,我们通常会试图计算一批训练样本中每个组成部分的损失函数的导数。重要的是,我们不会在每次对一个参数求导时都分配新的内存。使用自动微分的一个好处是:即使构建函数的计算图需要通过 Python 控制流(例如,条件、循环或任意函数调用),我们仍然可以计算得到的变量的梯度。然后我们记录⽬标值的计算,执⾏它的反向传播函数,并访问得到的梯度。在我们的例子中,我们只想求偏导数的和,所以传递一个 1 的梯度是合适的。

2024-09-28 17:54:29 1543

原创 【深度学习】— 微积分—导数和微分 、导数的定义 、导数的数值计算 、导数的符号 、常用导数规则 、微分法则 、应用示例 、偏导数 、梯度 、梯度的常用公式 、链式法则

微分和积分是微积分的两个分⽀,前者可以应⽤于深度学习中的优化问题。• 导数可以被解释为函数相对于其变量的瞬时变化率,它也是函数曲线的切线的斜率。• 梯度是⼀个向量,其分量是多变量函数相对于其所有变量的偏导数。• 链式法则使我们能够微分复合函数。

2024-09-28 11:57:26 1260

原创 【深度学习】— 线性代数基础-标量、向量、矩阵、张量、张量算法的基本性质、按元素运算示例、Hadamard积、标量与张量运算、广播机制、降维、点积、矩阵-向量积、矩阵-矩阵乘法、范数

标量、向量、矩阵和张量是线性代数中的基本数学对象。向量是对标量的泛化,矩阵是对向量的泛数。标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴。通过sum和mean函数,张量可以沿指定轴降低维度。两个矩阵的按元素乘法称为Hadamard积,它与矩阵乘法不同。在深度学习中,常用的范数包括L1范数、L2范数和Frobenius范数。我们可以对标量、向量、矩阵和张量执行各种操作。

2024-09-27 18:06:17 1555

原创 【LangChain学习之旅】—(22)聊天客服机器人的开发(下)

Streamlit 和 Gradio 都是让数据科学家和开发者能够快速为机器学习模型创建 Web UI 的框架。Streamlit 是为数据应用、仪表板和可视化设计的。它提供了多种小部件,使得用户可以与数据和模型进行交互。它非常 Pythonic,意味着它的使用方式非常自然,对于熟悉 Python 的人来说非常直观。Gradio 更多是为了展示和演示机器学习模型。它提供了一种快速的方法,使非技术用户也能与机器学习模型进行交互,无需编写复杂的代码。以下是对它们特点进行的对比总结。

2024-05-13 15:37:33 403

原创 【LangChain学习之旅】—(21)聊天客服机器人的开发(上)

聊天机器人基本拥有了很多能力,有些能力来自于模型本身,比如 World Knowledge(世界知识)、总结、对话等等。除此之外,我们还为它武装了记忆功能以及检索内部文档的功能。除了基本的提示和 LLM 之外,记忆和检索是聊天机器人的核心组件。这两者使其不仅可以回忆起过去的交互,还可以提供最新的、特定领域的信息。在这个聊天机器人的构建过程中,我们进一步复习了 LangChain 中的对话模型、提示模板、记忆的实现,以及检索功能和 RAG 功能的实现。

2024-05-13 15:28:05 529

原创 【报错】LangChain Embedding 模型 (小记)—— chatglm报错“msg“:“str type expected“,“type“:“type_error.str“}]}‘

1. OpenAIEmbeddings: - 使用简单,并且效果比较好; - 会消耗openai的token,特别是大段文本时,消耗的token还不少,如果知识库是比较固定的,可以考虑将每次生成的embedding做持久化,这样就不需要再调用openai了,可以大大节约token的消耗; - 可能会有数据泄露的风险,如果是一些高度私密的数据,不建议直接调用。2. HuggingFaceEmbeddings: - 可以在HuggingFace上面选择各种sentence-similarity

2024-04-20 23:10:12 466

原创 【报错】Python3.9及以上相对路径导入文件夹方式

相对导入使用前缀点号。一个前缀点号表示相对导入从当前包开始。两个或更多前缀点号表示对当前包的上级包的相对导入,第一个点号之后的每个点号代表一级。语法,但相对导入只能使用第二种形式;不是一个有效的表达式。

2024-04-08 17:18:12 447

原创 【LangChain学习之旅】—(20)BabyAGI:根据气候变化自动制定鲜花存储策略

LangChain 目前是将基于 CAMEL 框架的代理定义为 Simulation Agents(模拟代理)。这种代理在模拟环境中进行角色扮演,试图模拟特定场景或行为,而不是在真实世界中完成具体的任务。随着 ChatGPT 的崭露头角,我们迎来了一种新型的代理——Autonomous Agents(自治代理或自主代理)。这些代理的设计初衷就是能够独立地执行任务,并持续地追求长期目标。

2024-04-05 23:28:09 358

原创 【LangChain学习之旅】—(19)CAMEL:通过角色扮演进行思考创作内容

下面,定义 CAMELAgent 类。这是一个核心类,用于管理与语言模型的交互。它包含了初始化消息、更新消息和与模型进行交互的方法。self,) -> None:"""重置对话消息""""""初始化对话消息""""""更新对话消息列表""""""进行一步交互,并获取模型的响应"""智能代理在未来世界中将扮演越来越重要的角色。为了使这些代理能够更好地为人类服务,我们需要找到方法来提高它们的交流能力。CAMEL 这篇论文提供了一个全新的视角来看待交流代理的发展。

2024-04-05 22:29:34 421

原创 【LangChain学习之旅】—(18)回调函数:在AI应用中引入异步通信机制

在 LangChain 中,回调机制同样为用户提供了灵活性和自定义能力,以便更好地控制和响应事件。CallbackHandler 允许开发者在链的特定阶段或条件下注入自定义的行为,例如异步编程中的响应处理、事件驱动编程中的事件处理等。这为 LangChain 提供了灵活性和扩展性,使其能够适应各种应用场景。

2024-04-05 21:18:44 275

原创 【LangChain学习之旅】—(16)检索增强生成:通过RAG助力大模型

通过检索增强生成来存储和搜索非结构化数据的最常见方法是,给这些非结构化的数据做嵌入并存储生成的嵌入向量,然后在查询时给要查询的文本也做嵌入,并检索与嵌入查询“最相似”的嵌入向量。向量数据库则负责存储嵌入数据,并为你执行向量的搜索。RAG 实际上是为非结构化数据创建了一个“地图”。当用户有查询请求时,该查询同样被嵌入,然后你的应用程序会在这个“地图”中寻找与之最匹配的位置,从而快速准确地检索信息。

2024-04-05 20:01:43 290

原创 【LangChain学习之旅】—(15)工具和工具箱:LangChain中的Tool和Toolkits一览

大模型的推理,加上工具的调用,都集成在一个系统中,而这个系统可以处理多种类型的任务。一旦选择了合适的工具,LangChain 就会将任务的输入传递给这个工具,然后工具会处理这些输入并生成输出。这个输出又经过大模型的推理,可以被用作其他工具的输入,或者作为最终结果,被返回给用户。当代理接收到一个任务时,它会根据任务的类型和需求,通过大模型的推理,来选择合适的工具处理这个任务。这个选择过程可以基于各种策略,例如基于工具的性能,或者基于工具处理特定类型任务的能力。在这个框架中,每个功能都被封装成一个工具。

2024-04-05 00:07:44 581

原创 【LangChain学习之旅】—(14)代理(下):结构化工具对话、Self-Ask with Search以及Plan and execute代理

LangChain 的第一个版本是在 2022 年 11 月推出的,当时的设计是基于 ReAct 论文构建的,主要围绕着代理和工具的使用,并将二者集成到提示模板的框架中。早期的工具使用十分简单,AgentExecutor 引导模型经过推理调用工具时,仅仅能够生成两部分内容:一是工具的名称,二是输入工具的内容。而且,在每一轮中,代理只被允许使用一个工具,并且输入内容只能是一个简单的字符串。这种简化的设计方式是为了让模型的任务变得更简单,因为进行复杂的操作可能会使得执行过程变得不太稳定。

2024-04-04 22:27:28 300

原创 【LangChain学习之旅】—(13) 代理(中):AgentExecutor究竟是怎样驱动模型和工具完成任务的?

上节了解了 ReAct 框架的原理,LangChain 中的“代理”和“链”的差异究竟是什么?。下面这个图,就展现出了 Agent 接到任务之后,自动进行推理,然后自主调用工具完成任务的过程。那么,你看 LangChain,乃至整个大模型应用开发的核心理念就呼之欲出了。这个核心理念就是。这里,我又一次重复了上一段话,显得有点啰嗦,但是这个思路真的是太重要了,它也凸显了 LLM 作为 AI 自主决定程序逻辑这个编程新范式的价值,我希望你仔细认真地去理解。

2024-04-04 19:22:11 269

原创 【报错】使用gradio渲染html页面无法加载本地图片

查看github issue下的解决方案,将运行gradio的文件所在位置与图片所在位置使用相对路径,请注意,出于安全原因,应用程序中包含的任何文件都必须位于app.py的同一目录或子目录中。在使用gradio框架渲染html页面,使用绝对路径。

2024-03-20 21:23:41 2273 5

原创 【LangChain学习之旅】—(12) 代理(上):ReAct框架,推理与行动的协同

这节课我们介绍了什么是 LangChain 中的代理,更重要的是,我们介绍了代理自主行动的驱动力—— ReAct 框架。通过 ReAct 框架,大模型将被引导生成一个任务解决轨迹,即观察环境 - 进行思考 - 采取行动。观察和思考阶段被统称为推理(Reasoning),而实施下一步行动的阶段被称为行动(Acting)。在每一步推理过程中,都会详细记录下来,这也改善了大模型解决问题时的可解释性和可信度。

2024-03-10 16:42:18 393

数据库系统-下-第22讲模拟练习题解析

10. T1,T2是两个事务,图(a)(b)给出这两个事务的两种调度S1,S2,关于S1,S2,说法正确的选项是_____________。 A、S1是可串行化调度,S2是可串行化调度 B、S1是可串行化调度,S2是不可串行化调度 ==C、S1是不可串行化调度,S2是可串行化调度== D、S1是不可串行化调度,S2是不可串行化调度 下列说法正确的是__________。 A、正确的并行调度一定是具有可串行性的调度 B、用于并发控制的两阶段封锁法不会产生死锁现象 ==C、两阶段封锁法是可串行化的并行调度算法== D、一个调度如果是非冲突可串行化的,那么也一定不是可串行化的 > 选项 A 的说法是不正确的,可串行化的调度一定是正确的并行调度,反之则不然。选项 B > 的说法是不正确的,两阶段封锁法一定可以产生可串行化的调度,但可能会产生死锁现象。选项 C > 的说法是正确的,两阶段封锁法一定可以产生可串行化的调度。选项 D > 的说法是不正确的,可串行化的调度可以是“非冲突可串行化”的,冲突可串行化比可串行化要严格。

2023-05-30

USTC编译原理2021-Final试卷.pdf

大三上,中科大编译原理2021年期末试卷

2023-02-24

USTC算法基础 2022-Fall-Final.pdf

USTC算法基础 2022-Fall-Final.pdf

2023-02-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除