- 博客(28)
- 收藏
- 关注
原创 Autoware.Universe 感知(perception)模块详解
自动驾驶感知模块解析 摘要:本文系统分析了自动驾驶系统中的感知模块,该模块通过激光雷达、摄像头等传感器获取环境数据,为路径规划和控制提供关键信息。文章详细介绍了感知模块的启动流程、核心功能包及数据处理过程:1)地面分割采用网格化点云分类技术;2)离群点过滤结合栅格地图提升数据质量;3)多目标跟踪实现对动态物体的持续追踪;4)基于地图的轨迹预测功能。整个处理流程遵循"预处理→分割→识别→跟踪"的严格顺序,最终输出高质量的障碍物信息和环境感知结果,为下游规划控制模块提供可靠输入。
2025-06-29 17:29:57
744
原创 Autoware.Universe 定位(localization)模块详解
本文分析了Autoware.Universe定位模块的启动流程和核心实现:1)启动流程通过多级launch文件实现,最终调用pose_initializer等功能包;2)定位过程分为地图加载(100-300ms)、传感器准备(50ms)和实时定位三个阶段;3)重点解析了pose_initializer包通过GNSS或请求位置初始化位姿,以及NDT扫描匹配的交互逻辑;4)系统采用多传感器融合(LiDAR+IMU+轮速计)并通过EKF实现精确定位。文章揭示了定位模块的代码架构和协作机制,为理解自动驾驶定位系统提
2025-06-26 20:36:59
742
原创 Autoware.Universe 传感器(sensing)模块详解
文章摘要:本文详细介绍了Autoware自动驾驶系统中的激光雷达数据处理模块。系统通过层级式启动流程加载传感器驱动、点云预处理、感知和多传感器融合节点。核心功能包pointcloud_preprocessor提供点云滤波、去地面、ROI裁剪等功能,pointcloud_segmentation负责障碍物检测。数据处理流程包括多雷达数据拼接、时间同步、降采样、区域裁剪、运动畸变校正和离群点过滤,最终输出给感知模块进行路径规划。系统还包含激光雷达堵塞诊断、点云累积、矢量地图过滤等辅助功能模块。(149字)
2025-06-25 19:56:30
917
原创 Autoware.Universe 地图(map)模块详解
就是为了家在高精度的地图所作的一些事情和后面定位需要用的数据。内容知识本人的一些小小见解,仅供参考 如有错误望包含!!!!!!
2025-06-24 19:14:15
969
原创 基于Qt界面的多文档开发
一直在用MFC,但自己也一直在学习QT,感觉两者的区别其实不是很大,MFC的可操控性比较强,工作也一直用的MFC,几乎很少用QT,但由于过于依赖Windows的API所以移植性不好,但不管是Qt还是MFC其实都只是工具,重点还在于C++、线程、网络编程、STL、以及各种库的引用;以下是我的学习Qt的实践过程(源码会放在网盘里面)。
2024-03-21 20:44:00
1157
原创 Tcp/iP协议
毫无疑问,TCP/IP (Transmission Control Protocol/Internet Protocol, 传输控制协议/网际协议)是发展至今最成功的通信协议之一。它起源于20世纪60年代末美国政府资助的一个分组交换网络研究项目,它允许分布在各地的装着完全不同操作系统的计算机互相通信。随着PC的及,TCP/IP 以其开放性的特点,成为了Intermet的基础,通过Internet把全世界数以千万的计算机连接在了一起。
2023-06-25 20:36:38
278
原创 基于深度学习的农作物病虫害识别
摘要:我国有广阔的农作物种植面积,其中病虫害对农作物产量的影响最大,当农作物得了病虫害时,其整体生理机能会大大下降从而导致植株瘦小,无法达到最优生产状态从而产量不高经济效益低。因此农民需要多关注农作物的生长状态,由于植株较多并且小因此病虫害通常很难发现,每当发现时其通常已经扩散了很大的面积。目前深度学习技术已经应用在诸多领域,其中在农业领域的应用也相对成熟,使用深度学习技术对农作物病虫害的图像进行识别判断,能准确、快速地识别出病虫害的种类,减小因人为经验不足而造成的病虫害误判,滥用农药对环境造成的不良影响。
2021-12-31 11:16:29
8053
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人