二维背包(动态规划)

该文章介绍了使用动态规划求解背包问题的方法,通过一个C++代码示例展示了如何计算在背包容量和重量限制下,能获得的最大物品价值。代码遍历每个物品,倒序更新一个二维dp数组,以确定是否包含某个物品以获取最大价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dp[i][j] 表示当背包体积为 i,重量为 j 时能获得的最大总价值。对于每个物品 i,从背包容量和重量的最大值开始,倒序循环更新 dp 数组。更新公式为:dp[j][k] = max(dp[j][k], dp[j-v[i]][k-w[i]] + p[i]),即在放入当前物品和不放入当前物品两种情况中选择价值最大的方案。

代码如下:

#include <bits/stdc++.h>
using namespace std;

int main() {
    int T;
    cin >> T;
    while (T--) {
        in
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值