数据结构 八大排序之归并排序

本文详细介绍了归并排序的原理、步骤和实例,通过逐步解析排序过程展示其工作方式。归并排序是一种稳定的排序算法,具有O(nlogn)的时间复杂度。文中还给出了归并排序的代码实现,并对其性能进行了分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.归并排序

1.1归并排序引入

对于堆排序来说,因为用到了完全二叉树的深度是(log2n+1)的特性,所以效率就比较高,但是堆结构的设计比较复杂,现在我们想要可以直接利用完全二叉树来排序的方法,这个方法就是归并排序。

1.2归并排序的概念

归并排序是建立在归并操作上的一种有效的排序算法,归并排序对序列的元素进行逐层折半分组,然后从最小分组开始比较排序,合并成一个大的分组,逐层进行,最终所有的元素都是有序的。

1.3归并排序的原理

原理:假设初始序列含有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子数列,再两两归并,如此重复直到得到一个长度为n的有序序列为止。

1.4实例说明

(1).以4,5,8,1,7,2,6,3为例,排序过程:
在这里插入图片描述
(2).以84,9,18,19,48,12,90,84,8,12为例,排序过程:
在这里插入图片描述

  • 这里的两两合并指的是两个组合并;
  • 每组的数据单独看是有序的。

1.5具体步骤说明

以实例中的第一个为例:
在这里插入图片描述

序列逐层拆分如下:
在这里插入图片描述

然后从下往上逐层合并,首先对第一层序列1(只包含元素4)和序列2(只包含元素5)进行合并

创建一个大序列,序列长度为两个小序列长度之和,A、B指针分别指向两个小序列的第一个元素,C指向大序列的第一个元素
请添加图片描述
比较A、B指向的元素,4小于5,将4填入C指向的元素,C、A往右移一位
请添加图片描述

此时,序列1已经没有元素,将序列2的元素依次填入大序列中请添加图片描述
序列8和1,序列7和2,序列6和3,用同样的方式填入新的序列
请添加图片描述

接着,以4、5为序列1,1、8为序列2,继续进行合并

创建一个序列长度为4的大序列,A指向序列1的第一个元素4,B指向序列2的第一个元素1,C指向大序列的第一个元素
在这里插入图片描述
4和1比较,4大于1,1填入C指向的元素,C、B往右移一位
在这里插入图片描述
4和8比较,4小于8,4填入C指向的元素,C、A往右移一位
请添加图片描述

5和8比较,5小于8,5填入C指向的元素,C、A往右移一位
请添加图片描述

自此,序列1已经没有元素,将序列2的元素依次填入大序列中
在这里插入图片描述
序列2、7和序列3、6以同样的方式合并成新的序列
在这里插入图片描述
最后,将序列1、4、5、8和序列2、3、6、7以同样的方式继续合并成新的序列
在这里插入图片描述
所有元素均已排好。

1.6代码实现

void MergeSort(int *arr, int len)
{
	for(int i=1; i<len; i*=2)// O(logn)
	{
		Merge(arr, len, i);
	}
	
}
//一次划分函数  核心函数  //返回基准值最终所在下标
int Partition(int *arr, int left, int right)
{
	//先讲arr数组里的[left, right]的第一个值 作为基准值
	int tmp = arr[left];

	while(left < right)
	{
		while(left<right && arr[right] > tmp)//左右边界没有相遇且当前右边的值大于基准值tmp
		right--;

		if(left < right)//如果此时,左右边界没有相遇,那就只能证明右边right找到了一个小于等于基准值tmp的值
		{
			arr[left] = arr[right];
		}
		else
		{
			break;
		}
		
		while(left<right && arr[left] <= tmp)//左右边界没有相遇且当前左边的值小于等于基准值tmp
		left++;

		if(left < right)//如果此时,左右边界没有相遇,那就只能证明左边left找到了一个大于基准值tmp的值
		{
			arr[right] = arr[left];
		}
		else
		{
			break;
		}
		
	}

	arr[left] = tmp;//此时 因为 left == right
	return left;//return right ok
}

1.7性能分析

  1. 时间复杂度:最好,最坏,平均的时间复杂度均为O(nlogn)。
  2. 空间复杂度:空间复杂度O(n)。
  3. 稳定性:稳定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mi ronin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值