基于自编码器与属性信息的混合推荐模型

本文提出了一种名为DAAI的混合推荐模型,结合降噪自编码器与属性信息来提升推荐效果。通过降噪自编码器从评分矩阵中提取非线性特征,并利用属性信息(如用户和项目的属性)进行特征表示,然后通过多层感知机融合多种特征进行评分预测。实验表明,DAAI模型在MovieLens数据集上相比传统推荐算法如SVD、PMF等表现出更好的预测性能,尤其是在数据稀疏的情况下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

【目的】 传统的协同过滤推荐模型无法提取到用户与项目之间复杂的交互关系,这对于最终的推荐结果会造成一定的不良影响。 【方法】 针对这一问题,本文提出了一种混合推荐模型DAAI(Denoising Autoencoder with Attribute Information),采用降噪自编码器提取评分矩阵中的深层次非线性特征,在此基础上,使用DNN、CNN等方式提取属性信息中隐藏的特征,最后通过多层感知机融合多种特征得到最终的预测评分。 【结论】 将该模型在电影数据集MovieLens上进行实验,与奇异矩阵分解(SVD)、概率矩阵分解(PMF)、AutoRec等传统推荐算法进行比较,实验结果表明DAAI模型具有更好的推荐效果。 【局限】 神经网络结构较为复杂,所以本文的模型相较于传统的推荐模型训练时间有所增加。

关键词: 自编码器; 卷积神经网络; 深度学习; 推荐模型

引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值