背景介绍
另一方面,刚好这个项目作为我2023年的最后一个项目,就斗胆当作是2023年编程之旅的回顾,博主是在茫茫知识海洋漂泊的一叶小舟,还有许多的知识尚未学习,希望可以和大家互相交流学习!
2024年,冲鸭!!!!!
前言
生成对抗网络(Generative Adversarial Networks)在提出的时候是为了实现模型创造性的能力,如今在AI图像生成领域已经有非常广阔的应用,例如知名的Midjourney网站,就是通过用户输入的prompt提示,利用GAN的框架生成对应用户想要生成的图片;我自己对于这个模型的名声也是早有耳闻,刚好前一段时间看到了《Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks》这篇文章,内容里探究了把GAN模型应用到视网膜血管分割的领域,刚好可以与我本学期的生物医学创新实践联系在一起。
生成对抗网络介绍
生成对抗网络(Generative Adversarial Network)简称GAN,是深度学习领域的一种重要模型,由Ian Goodfellow在2014年提出。
GAN模型包括两部分:一个是生成器(Generator),另一个是判别器(Discriminator)。这两部分模型相互博弈,共同训练,赋予网络生成特定分布的数据的能力。
1. 生成器(Generator):该部分的目标是生成尽可能真实的数据。例如,如果我们想让网络生成一张风景图片,生成器的目标就是生成一张看上去就像是某个摄影师拍摄的风景照片。
2. 判别器(Discriminator):该部分的目标是尽可能好地区分出真实的和生成的数据。在风景图片的例子中,判别器需要区分出哪些图片是真实的风景照片,哪些是生成器生成的假照片。
两者相互博弈的过程中,判别器会不断提高对真假数据的判断能力,生成器也会不断提高