李宏毅2022深度学习与机器学习笔记(一)

目录

课程链接:不会还有人没听【2022】最新 李宏毅大佬的深度学习与机器学习吧???_哔哩哔哩_bilibili

机器学习

深度学习

反向传播

预测问题


课程链接:不会还有人没听【2022】最新 李宏毅大佬的深度学习与机器学习吧???_哔哩哔哩_bilibili

机器学习

梯度下降:

1.首先随机选取w0

2.计算LOSS函数对w=w0的偏导数

3.迭代更新w的数值,直到偏导数等于0 或者 达到初始设置一个迭代的次数

可能存在local minima的问题

不用担心不会算微分,一行代码就帮你算好了

梯度的方向指向函数增长最快的方向,梯度是一个向量,其分量是函数对每个独立变量的偏导数。在多维空间中,某一点处的梯度向量是垂直于该点的切平面的。

机器学习的三个步骤:

1.写出一个带有未知参数的函数

2.定义损失函数loss

3.参数优化,找到使得损失函数取最小值的未知参数

线性模型:

线性模型有一些限制,需要更加复杂的函数

分段函数:

红色的线=常数项+一系列蓝色的线的和

分段函数之外的,曲线:

可以使用分段函数来逼近曲线,分段函数又可以使用一系列蓝色的线表示,所以曲线可以使用许多蓝色的线来逼近

怎么表示蓝色的线(hard sigmoid),可以使用sigmoid函数,使用sigmoid函数只是一种方法,也可以使用其他的方法来逼近曲线:

改变w,改变坡度;改变b,左右移动;改变c,改变高度

可以用来制造不同的sigmoid函数,然后可以用来逼近不同的分段函数,然后就可以用来逼近不同的曲线

如下图,分段函数可以使用多个sigmoid函数来逼近:

如果再使用更多的feature

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值