目录
课程链接:不会还有人没听【2022】最新 李宏毅大佬的深度学习与机器学习吧???_哔哩哔哩_bilibili
课程链接:不会还有人没听【2022】最新 李宏毅大佬的深度学习与机器学习吧???_哔哩哔哩_bilibili
机器学习
梯度下降:
1.首先随机选取w0
2.计算LOSS函数对w=w0的偏导数
3.迭代更新w的数值,直到偏导数等于0 或者 达到初始设置一个迭代的次数
可能存在local minima的问题
不用担心不会算微分,一行代码就帮你算好了
梯度的方向指向函数增长最快的方向,梯度是一个向量,其分量是函数对每个独立变量的偏导数。在多维空间中,某一点处的梯度向量是垂直于该点的切平面的。
机器学习的三个步骤:
1.写出一个带有未知参数的函数
2.定义损失函数loss
3.参数优化,找到使得损失函数取最小值的未知参数
线性模型:
线性模型有一些限制,需要更加复杂的函数
分段函数:
红色的线=常数项+一系列蓝色的线的和
分段函数之外的,曲线:
可以使用分段函数来逼近曲线,分段函数又可以使用一系列蓝色的线表示,所以曲线可以使用许多蓝色的线来逼近
怎么表示蓝色的线(hard sigmoid),可以使用sigmoid函数,使用sigmoid函数只是一种方法,也可以使用其他的方法来逼近曲线:
改变w,改变坡度;改变b,左右移动;改变c,改变高度
可以用来制造不同的sigmoid函数,然后可以用来逼近不同的分段函数,然后就可以用来逼近不同的曲线
如下图,分段函数可以使用多个sigmoid函数来逼近:
如果再使用更多的feature