数据在从内存缓冲区写入磁盘时,根据磁盘数量将数据分成N份,这些数据同时并
发写入N块磁盘,使得数据整体写入速度是一块磁盘的N倍。读取时也一样,因此RAID0 具有极快的数据读写速度,但是RAID0不做数据备份,N块磁盘中只要有一块损坏,数 据完整性就被破坏,所有磁盘的数据都会损坏。
RAID1
数据在写入磁盘时,将一份数据同时写入两块磁盘,这样任何一块磁盘损坏都不会
导致数据丢失,插入一块新磁盘就可以通过复制数据的方式自动修复,具有极高的可靠性。
RAID10
结合RAID0和RAID1两种方案,将所有磁盘平均分成两份,
入,相当于RAID1,但是在每一份磁盘里面的M2块磁盘上,利用RAIDO技术并发读写, 既提高可靠性又改善性能,不过RAID10的磁盘利用率较低,有一半的磁盘用来写备份数据。
RAID3
一般情况下,一台服务器上不会岀现同时损坏两块磁盘的情况,在只损坏一块磁盘 的情况下,如果能利用其他磁盘的数据恢复损坏磁盘的数据,这样在保证可靠性和性能 的同时,磁盘利用率也得到大幅提升。
在数据写入磁盘的时候,将数据分成N-1份,并发写入N-1块磁盘,并在第N块磁 盘记录校验数据,任何一块磁盘损坏(包括校验数据磁盘),都可以利用其他N-l块磁盘的数据修复。
但是在数据修改较多的场景中,修改任何磁盘数据都会导致第N快磁盘重写校验数据,频繁写入的后果是第N块磁盘比其他磁盘容易损坏,需要频繁更换,所以RAID3很少在实践中使用。
RAID5
相比RAID3,方案RAID5被更多地使用。
RAID5和RAID3很相似,但是校验数据不是写入第N块磁盘,而是螺旋式地写入所 有磁盘中。这样校验数据的修改也被平均到所有磁盘上,避免RAID3频繁写坏一块磁盘的情况。
RAID6
如果数据需要很高的可靠性,在岀现同时损坏两块磁盘的情况下(或者运维管理水 平比较落后,坏了一块磁盘但是迟迟没有更换,导致又坏了一块磁盘),仍然需要修复数 据,这时候可以使用RAID6。
RAID6和RAID5类似,但是数据只写入N-2块磁盘,并螺旋式地在两块磁盘中写入
校验信息(使用不同算法生成)。
在相同磁盘数目(N)的情况下,各种RAID技术的比较如表4.3所示。
RAID技术可以通过硬件实现,比如专用的RAID卡或者主板直接支持,也可以通过 软件实现。RAID技术在传统关系数据库及文件系统中应用比较广泛,但是在大型网站比 较喜欢使用的NoSQL,以及分布式文件系统中,RAID技术却遭到冷落。
例如在HDFS ( Hadoop分布式文件系统)中,系统在整个存储集群的多台服务器上 进行数据并发读写和备份,可以看作在服务器集群规模上实现了类似RAID的功能,因此
HDFS以块(Block )为单位管理文件内容,一个文件被分割成若干个Block,当应用 程序写文件时,每写完一个Block, HDFS就将其自动复制到另外两台机器上,保证每个 Block有三个副本,即使有两台服务器宕机,数据依然可以访问,相当于实现了 RAID1 的数据复制功能。
当对文件进行处理计算时,通过MapReduce并发计算任务框架,可以启动多个计算 子任务(MapReduce Task ),同时读取文件的多个Block,并发处理,相当于实现了 RAID0 的并发访问功能。
在HDFS中有两种重要的服务器角色:NameNode (名字服务节点)和DataNode (数 据存储节点)。NameNode在整个HDFS中只部署一个实例,提供元数据服务,相当于操 作系统中的文件分配表(FAT),管理文件名Block的分配,维护整个文件系统的目录树 结构。DataNode则部署在HDFS集群中其他所有服务器上,提供真正的数据存储服务。
和操作系统一样,HDFS对数据存储空间的管理以数据块(Block )为单位,只是比 操作系统中的数据块(512字节)要大得多,默认为64MBO HDFS将DataNode上的磁盘 空间分成N个这样的块,供应用程序使用。
应用程序(Client)需要写文件时,首先访问NameNode.请求分配数据块,NameNode根据管理的DataNode服务器的磁盘空间,按照一定的负载均衡策略,分配若干数据块供Client 使用。
当Client写完一个数据块时,HDFS会将这个数据块再复制两份存储在其他DataNode
服务器上,HDFS默认同一份数据有三个副本,保证数据可靠性。因此在HDFS中,即使
DataNode服务器有多块磁盘,也不需要使用RAID进行数据备份,而是在整个集群上进
行数据复制,而且系统一旦发现某台服务器宕机,会自动利用其他机器上的数据将这台 服务器上存储的数据块自动再备份一份,从而获得更高的数据可靠性。
HDFS配合MapReduce等并行计算框架进行大数据处理时,可以在整个集群上并发
读写访问所有的磁盘,无需RAID支持。
4 小结
网站性能优化技术是在网站性能遇到问题时的解决方案。而网站的性能问题很多是 在用户高并发访问时产生的,所以网站性能优化的主要工作是改善高并发用户访问情况 下的网站响应速度。本章开篇所举的例子,当老板说“我们要改善网站性能”的时候, 他期望的是在A方案的基础上,不管是100个并发访问还是200个并发访问,响应时间 都能达到1秒。而架构师能做到的,则是利用分布式的方案改善网站并发特性,由于分 布式不可避免地会带来架构复杂、网络通信延迟等问题,所以最终设计出来的可能是B 方案:缩短高并发访问响应延迟的同时,却延长了原来低并发访问时的响应延迟。架构 师对这种可能性要心中有数,合理调整相关各方对性能优化的心理预期。
网站性能对最终用户而言是一种主观感受,性能优化的最终目的就是改善用户的体 验,使他们感觉网站很快。离开这个目的,追求技术上的所谓高性能,是舍本逐末,没 有多大意义。而用户体验的快或是慢,可以通过技术手段改善,也可以通过优化交互体 验改善。
小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注Java)
分享
首先分享一份学习大纲,内容较多,涵盖了互联网行业所有的流行以及核心技术,以截图形式分享:
(亿级流量性能调优实战+一线大厂分布式实战+架构师筑基必备技能+设计思想开源框架解读+性能直线提升架构技术+高效存储让项目性能起飞+分布式扩展到微服务架构…实在是太多了)
其次分享一些技术知识,以截图形式分享一部分:
Tomcat架构解析:
算法训练+高分宝典:
Spring Cloud+Docker微服务实战:
最后分享一波面试资料:
切莫死记硬背,小心面试官直接让你出门右拐
1000道互联网Java面试题:
Java高级架构面试知识整理:
988950)]
最后分享一波面试资料:
切莫死记硬背,小心面试官直接让你出门右拐
1000道互联网Java面试题:
[外链图片转存中…(img-hKx09GHd-1711042988951)]
Java高级架构面试知识整理:
[外链图片转存中…(img-XP1He7fO-1711042988951)]