一.神经网络基础
除了3D,无人驾驶,感知的,大部分的2D模型算法都是2015年提出来的。
神经网络是个模型,在2D中用得很多,它不是算法框架,它是基础计算的单元和方法。transformer中也会用到神经网络中的基础知识点。
人工智能目的就是把拿到的数据转成计算机能认识的矩阵,特征。
算法主要是改改网络结构。
(1)线性函数
1)线性回归与逻辑回归
从大层面上分析为什么要用这模型/算法?用这个模型/算法解决什么问题?
再从模型/算法细节上看怎么做的?怎么实现的?
线性回归是预测标签,它与特征有关,也与权重有关。其中标签(Y)与特征(x)是已知的,要求的是权重(W),通过多个隐藏层不断学习,预测出与标签更符合的概率值来,w对概率值预测最关健。
在回归算法中,我们通常先对特征x进行标准化,标签y也可以做标准化(也可以不做),因为对标签y不做标签化的话,模型有可能学不到真的那么大的值(假设实际值很大)的话,预测出来的结果可能就不准确或者容易出现过拟合。过拟合就是说模型只关注局部的特征(对离群点进行分开<其实它可能是异常点了>时,决策边界就越复杂,造成权重参数w会越大),这样就没考虑全部特征,所以权重参数w要平均好一点,这样泛化能力才更好。我们总是希望模型不要太复杂,因为太复杂容易过拟合,过拟合的模型是没用的。
逻辑回归就不预测一个值,是预测分类。
神经网络是多层(会有多层的隐藏层)的线性回归,可拓展性强,每一层组成当作一个大的黑盒子。
2)y=f(x,W)=Wx+b
输入的数据x(转成矩阵),权重参数w,b与输出y都是矩阵来的.它就是从输入----->输出的映射。
故事:输入一张图片,长与宽都是32,那就是有32*32个像素点,然后每个像素点是有3个颜色通道(3通道RGB)组成,所以一共有32*32*3个点(3072)作为输入x1---------x3072,即任务中有3072个特征,也就是3072个特征组成的矩阵。依线性回归思想,有3072个点(特征),那也会有3072个权重值(w1-------3072)组成,w假