卷积神经网络CNN-激励层

本文介绍了神经网络中的激活函数,包括ReLU、Sigmoid和Softmax,讨论了它们的作用、优缺点以及在CNN中的应用。ReLU因其快速收敛和解决梯度消失问题而被广泛使用,但存在DeadReLU问题;Sigmoid和Softmax常用于输出层,但Sigmoid存在梯度消失问题,Softmax用于多分类问题。激活函数的选择对网络的非线性建模能力和梯度传播有重要影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

激励层(Activating Layer)

神经元向后传递信息需要与阈值(Thresholding)做比较来激活神经元从而向后传递信息,在CNN卷积神经网络中,卷积后同样需要激活过程,把卷积层输出结果做非线性映射就是激励层的作用。

CNN采用非线性函数作为其激活函数(Activation Function)

1、什么是激活函数呢?激活函数并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中的冗余),这是神经网络能解决非线性问题关键。激活函数最终决定了要发射给下一个神经元的内容。

2、为什么要用激活函数呢?激活函数的主要作用是提供网络的非线性建模能力。在卷积层中,主要采用了卷积的方式来处理,也就是对每个像素点赋予一个权值,这个操作显然就是线性的。但是对于我们的样本来说,不一定是线性可分的,为了解决这个问题,我们可以进行线性变化,或者引入非线性因素,解决线性模型所不能解决的问题。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。

3、为什么激活函数要用非线性函数?假如网络中全部是线性部件,那么线性的组合仍然是线性的,与单独一个线性分类器无异。这样就做不到用非线性来逼近任意函数。使用非线性激活函数 ,以便使网络更加强大,增加它的能力,使它可以学习复杂的事物,复杂的表单数据,以及表示输入输出之间非线性的复杂的任意函数映射。使用非线性激活函数,能够从输入输出之间生成非线性映射。

神经网络激活函数

1、ReLU函数(The Rectified Linear Unit)

中文名称是线性整流函数,是非饱和激活函数,用于隐层神经元输出。

ReLU函数表达式:

ReLU图像:

使用ReLU函数能使计算变快,因为无论是函数还是其导数都不包含复杂的数学运算。然而,当输入为负值的时候,ReLU 的学习速度可能会变得很慢,甚至使神经元直接无效,因为此时输入小于零并且梯度为零,从而其权重无法得到更新,在剩下的训练过程中会一直保持静默。

ReLU优点:

  • 相比于Sigmoid和Tanh两个函数,其线性、非饱和的形式在SGD中能够快速收敛。

  • ReLU解决了梯度消失的问题,至少x在正区间内,神经元不会饱和。

  • 梯度求解公式简单,不会产生梯度消失和梯度爆炸。

ReLU缺点:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值