HOW - DP 动态规划系列(三)(含01背包问题)

通过几个算法的学习,理解和掌握动态规划来解决背包问题。

一、01背包问题

对于面试的话,掌握01背包完全背包就够用了,最多可以再来一个多重背包。

如果这几种背包分不清,可以参考下图:

在这里插入图片描述
图片来源:代码随想录

具体问题:有 n 件物品和一个最多能背重量为 w 的背包。第 i 件物品的重量是 weight[i],得到的价值是 value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

举例:

重量价值
物品0115
物品1320
物品2430

背包最大重量为4,问背包能背的物品最大价值是多少?

最直接的暴力解法

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 O(2^n),这里的n表示物品数量。

如下是使用回溯法解决0-1背包问题的JavaScript实现。该算法通过递归尝试所有可能的物品组合,以找到在不超过背包容量的情况下能够获得的最大价值。

有关回溯法更多内容可以阅读:WHAT - 回溯系列(一)

/**
 * 使用回溯法解决0-1背包问题
 * @param {number[]} weight - 物品的重量数组
 * @param {number[]} value - 物品的价值数组
 * @param {number} w - 背包的最大容量
 * @returns {number} - 背包能装入物品的最大价值
 */
function knapsackBacktracking(weight, value, w) {
	const n = weight.length;
	let maxValue = 0;

    /**
     * 回溯函数
     * @param {number} index - 当前考虑的物品索引
     * @param {number} currentWeight - 当前背包中的总重量
     * @param {number} currentValue - 当前背包中的总价值
     */
	function backtrack(index, currentWeight, currentValue) {
 	    console.log(index, currentWeight, currentValue)
 	    // 如果当前重量已经超过背包容量,剪枝
		if (currentWeight > w) {
			return;
		}
		
		// 如果已经考虑完所有物品,更新最大价值
		if (index === n) {
			maxValue = Math.max(maxValue, currentValue);
			return;
		}
	


		// 不选择当前物品
		backtrack(index + 1, currentWeight, currentValue);

		// 选择当前物品(前提是不超过背包容量)
		backtrack(index + 1, currentWeight + weight[index], currentValue + value[index]);
	}

	// 从第0个物品开始回溯
	backtrack(0, 0 ,0);
	return maxValue;
}

// 示例用法
const weight = [2, 3, 4, 5];
const value = [3, 4, 5, 6];
const capacity = 5;

const result = knapsackBacktracking(weight, value, capacity);
console.log(`背包能装入物品的最大价值为: ${result}`);

动态规划解法

暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

流程:

  1. 确定 dp 数组以及下标的含义
  2. 确定递推公式
  3. dp 数组如何初始化
  4. 确定遍历顺序
  5. 举例推导 dp 数组
function knapsackDP(weight, value, w) {
    const n = weight.length;
    const dp = Array(w + 1).fill(0);

    for (let i = 0; i < n; i++) {
        for (let j = w; j >= weight[i]; j--) {
            if (j >= weight[i]) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
    }

    return dp[w];
}

// 示例用法
const weight = [2, 3, 4, 5];
const value = [3, 4, 5, 6];
const capacity = 5;
const resultDP = knapsackDP(weight, value, capacity);
console.log(`背包能装入物品的最大价值为: ${resultDP}`); // 输出: 背包能装入物品的最大价值为: 7

动态规划方法的时间复杂度为O(n*w),在处理大规模数据时效率更高。

二、完全背包

完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@PHARAOH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值