WHAT - 二次贝塞尔曲线和三次贝塞尔曲线

二次贝塞尔曲线(Quadratic Bézier Curve)和三次贝塞尔曲线(Cubic Bézier Curve)是两种常见的 贝塞尔曲线,广泛应用于图形绘制、动画轨迹、字体轮廓等领域。它们都是通过一组控制点生成的平滑曲线。


一、二次贝塞尔曲线(Quadratic Bézier Curve)

控制点数量:3 个点

  • 起点 P 0 P_0 P0
  • 控制点 P 1 P_1 P1(决定曲线的弯曲方向和程度)
  • 终点 P 2 P_2 P2

数学公式

B ( t ) = ( 1 − t ) 2 P 0 + 2 ( 1 − t ) t P 1 + t 2 P 2 , t ∈ [ 0 , 1 ] B(t) = (1 - t)^2 P_0 + 2(1 - t)t P_1 + t^2 P_2, \quad t \in [0, 1] B(t)=(1t)2P0+2(1t)tP1+t2P2,t[0,1]

特点

  • 仅一个控制点
  • 曲线位于 P 0 P_0 P0 P 2 P_2 P2 之间,并向 P 1 P_1 P1 弯曲
  • 相对简单,适合控制较简单的弯曲轨迹

二、三次贝塞尔曲线(Cubic Bézier Curve)

控制点数量:4 个点

  • 起点 P 0 P_0 P0
  • 第一个控制点 P 1 P_1 P1
  • 第二个控制点 P 2 P_2 P2
  • 终点 P 3 P_3 P3

数学公式

B ( t ) = ( 1 − t ) 3 P 0 + 3 ( 1 − t ) 2 t P 1 + 3 ( 1 − t ) t 2 P 2 + t 3 P 3 , t ∈ [ 0 , 1 ] B(t) = (1 - t)^3 P_0 + 3(1 - t)^2 t P_1 + 3(1 - t)t^2 P_2 + t^3 P_3, \quad t \in [0, 1] B(t)=(1t)3P0+3(1t)2tP1+3(1t)t2P2+t3P3,t[0,1]

特点

  • 两个控制点,控制力更强,可以形成更复杂的弯曲
  • 是矢量图形(如 SVG、字体)中最常用的贝塞尔类型

三、对比总结

特性二次贝塞尔曲线三次贝塞尔曲线
控制点个数34
曲线自由度一般更高
常用场景简单路径、动画字体、矢量绘图
复杂度
表达能力

可视化示意(可参考)

二次: P0 -----> P1 -----> P2
三次: P0 -> P1 ... P2 -> P3

应用举例

  • SVG路径

    • 二次:<path d="M P0 Q P1 P2" />
    • 三次:<path d="M P0 C P1 P2 P3" />
  • CSS 动画cubic-bezier(x1, y1, x2, y2) 用的是三次贝塞尔曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@PHARAOH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值