DeepSeek R1 的 GRPO(Group Relative Policy Optimization,群体相对策略优化) 是一种专为大规模模型设计的强化学习算法,旨在提升模型在复杂推理任务中的性能,同时显著降低训练成本。以下从核心原理、技术创新、应用场景及局限性四个方面进行科普解析:
一、核心原理:从传统RL到GRPO的进化
-
传统RL的瓶颈
传统强化学习算法(如PPO)需依赖价值函数(Critic Model)评估动作优劣,导致显存占用高、训练复杂度大,尤其在大语言模型(LLM)场景中,Critic模型通常与策略模型(Actor)参数量相当,资源消耗翻倍。 -
GRPO的核心改进
GRPO通过以下创新解决上述问题:
- 摒弃Critic模型:直接通过组内相对优势估计(Group Relative Advantage Estimation)替代价值函数,即对同一问题采样多个输出,用组内平均奖励作为基线计算优势函数,减少显存占用40%以上。
- 动态梯度正则化:引入梯度监测器和自适应正则控制器,解决PPO训练中的数值不稳定问题,将训练崩溃率从17%降至2.3%。
- 奖励机制优化:结合结果奖励(仅对最终输出评分)与过程奖励(对推理步骤评分),提升模型在多步推理任务中的表现。
二、技术创新:GRPO的独特设计
-
组内相对优势估计
对于每个问题,从旧策略中采样多个输出,计算组内奖励的标准化值(减去均值并除以标准差),作为每个token的优势函数。例如,在数学问题中,模型生成的多个答案通过奖励模型评分后,组内相对优势帮助策略模型区分最优解。 -
无Critic的高效训练
GRPO无需单独训练价值模型,直接通过目标函数优化策略模型,公式如下:
其中优势函数 ( A ) 基于组内奖励计算,避免了Critic模型的误差累积。
- 跨模态通用性
GRPO最初用于文本推理(如数学解题),后被迁移至视觉、音频领域。例如,在视觉定位任务中,GRPO训练的模型能识别“台阶对视障人士的危险性”,准确率提升30%。
三、应用场景与效果
- 复杂推理任务
- 数学推理:在AIME 2024测试中,GRPO将模型pass@1分数从15.6%提升至71.0%,接近人类专家水平。
- 多模态理解:如视觉问答中,GRPO使模型能结合图片内容推理“食物蛋白质含量”,准确率从45%提升至78%。
- 跨领域迁移
- 音频推理:小米团队将GRPO应用于Qwen2-Audio-7B模型,在MMAU音频理解评测中,准确率从51.8%跃升至64.5%,超越GPT-4o。
- 工业落地:GRPO支持多阶段训练流程(冷启动→强化学习→多样化微调),平衡推理能力与语言一致性,适用于客服、教育等场景。
四、局限性与改进方向
- 潜在偏见问题
- 长度偏见:GRPO的归一化机制可能偏好短答案或长错误答案,导致生成内容冗长。
- 难度偏差:标准差归一化易忽视中等难度问题,影响泛化能力。
改进方案:新加坡国立大学团队提出Dr. GRPO,移除长度和标准差归一化,通过两行代码修正偏见,提升Token效率。
- 初期生成质量依赖基座模型
GRPO需依赖高质量基座模型(如DeepSeek-V3),若基座预训练不足,可能影响强化学习效果。研究显示,Qwen2.5基座模型在未微调时已展现60%的推理能力,说明基座模型的“先天能力”至关重要。
总结
GRPO通过群体优化和动态正则化,解决了传统RL的资源消耗与稳定性问题,成为DeepSeek R1在推理任务中的核心技术。其跨模态通用性(视觉、音频)和高效训练特性,为AI模型的自我进化提供了新范式。未来,结合基座模型优化与偏见修正(如Dr. GRPO),将进一步释放其潜力。
我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4
但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!
❗️为什么你必须了解大模型?
1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍
2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰
3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI
(附深度求索BOSS招聘信息)
⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!