Python数据降维之PCA主成分分析【附代码】

目录

1、数据降维

(1)PCA主成分分析原理介绍

1、二维空间降维

2、二维空间降维

3、n维空间降维

(2)PCA主成分分析代码实现

1、二维空间降维Python代码实现

2、三维空间降维Python代码实现

2、案例 - 人脸识别模型

(1)背景

(2)人脸数据读取、处理与变量提取

1、读取人脸照片数据

2、人脸数据处理 - 特征变量提取

(3)数据划分与降维

1、划分训练集和测试集

2、PCA数据降维

(4) 模型的搭建与使用

1、模型搭建

2、模型预测

3、模型对比(数据降维与不降维)


1、数据降维

       降维的方法主要有两种:选择特征抽取特征选择特征即从原有的特征中挑选出最佳的特征,抽取特征即将数据由高维向低维投影,进行坐标的线性转换。PCA主成分分析即为典型的抽取特征的方法,它不仅是对高维数据降维,更重要的是经过降维去除噪声,发现数据中的模式。这一节主要介绍PCA主成分分析的基本原理,并通过简单案例来讲解如何通过Python来实现PCA主成分分析。

(1)PCA主成分分析原理介绍

1、维空间降维

       假设在二维坐标系上有一组数据,分别是A(1, 1)B(2, 2)C(3, 3),我们的目的就是把这一组二维数据转换为一维数据。

2、维空间降维

       如果需要将这组数据从二维降至一维,我们可以将"y = x"这一条直线作为新的坐标轴,在下图右边新的坐标体系中,只有一条横轴x',而不再具有纵轴了,这样就把原来的二维数据转换为一维数据了,点A1, 1)就变成了2√2这一个一维坐标了,点B2, 2)就变成了2√2这个一维坐标了。

       在实际进行数据降维前首先需要对特征数据零均值化,即对每个特征维度的数据减去该特征的均值

       对于二维到一维的数据降维,其本质就是在将原始数据零均值化后,寻找下图所示的合适的线性组合系数αβ,来将二维数据转换为一维数据

3、n维空间降维

       如果原特征变量有n个,那么就是n维空间降维,n维空间降维的思路和二维空间降维的思路是一致的。例如将n维数据(X1,X2,...,Xn )转换为一维数据,就是寻找下图所示的线性组合系数a1a2……an

       在实际应用中,Python已经提供了相应的计算库供我们使用,能够快速地帮我们计算出这些系数。分析的是n维向量转成1维向量,那么如何n维向量(X1,X2,...,</

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值