ollama部署通义大模型公网访问

最近闲来无事玩大模型,不过需要硬件需求:

  • 独显主机且显卡驱动正常,可能最好英伟达显卡,别的没试过
  • windows系统安装了wsl和docker desktop
  • 公网ip的云服务器(或者别的内网穿透方案)
  • 本地另一台穿透中继服务器(如树莓派,非必须)

部署当然首选ollam,去下面网页下载安装就好,其实安装最简单

OllamaGet up and running with large language models.icon-default.png?t=O83Ahttps://ollama.com/这是一个大模型平台,里面有很多大模型可选,不过考虑中文还是优选通义千问大模型,安装后可能命令行窗口会卡住很久不动也不下载,不过我在ollama界面中发现已经下载完成了(右下角隐藏任务栏),直接在命令行敲回车就进入交互界面了。

这时候我们还只能在命令行里交互,虽然不影响什么,但是毕竟没有历史记录等功能网页的版看起来舒服,这时候我们就需要we

<think>好的,我现在需要帮助用户解决如何通过vLLM部署Ollama拉取的通义千问模型的问题。首先,我得理清楚Ollama和vLLM之间的关系,以及各自的配置步骤。 用户已经提到了Ollama的基本命令,比如拉取模型和运行模型。但vLLM是另一个推理框架,可能需要将Ollama中的模型导出或转换为vLLM支持的格式。首先,我需要确认Ollama是否支持导出模型文件,比如GGUF或者Hugging Face格式。因为vLLM主要支持Hugging Face的模型仓库中的模型,或者本地的模型文件。 然后,用户可能需要先通过Ollama拉取通义千问模型。但Ollama模型库中是否有Qwen模型呢?可能需要用户自行创建模型文件,或者从其他来源获取。例如,Ollama允许用户通过Modelfile自定义模型,所以用户需要编写Modelfile来指定基础模型和参数。如果通义千问的模型已经以GGUF格式存在,用户可以通过ollama create命令来创建对应的模型。 接下来,部署到vLLM的话,可能需要将模型转换为vLLM支持的格式。比如,vLLM支持从Hugging Face下载模型,或者加载本地的模型目录。因此,用户可能需要将Ollama中的模型导出到本地,并确保其结构符合vLLM的要求。或者,如果通义千问已经在Hugging Face上存在,用户可以直接通过vLLM加载,而不需要经过Ollama。 另外,用户可能需要安装vLLM,并确保环境依赖正确。比如,vLLM需要特定版本的PyTorch和CUDA,这可能和Ollama的环境有冲突,需要注意兼容性。 在步骤方面,可能的流程是:1. 通过Ollama拉取或创建Qwen模型;2. 导出模型文件到本地;3. 配置vLLM使用该模型文件;4. 启动vLLM服务进行推理。需要验证每个步骤的可行性,比如Ollama是否支持导出,vLLM是否支持加载该格式的模型。 还可能存在权限问题,比如模型文件的路径是否正确,是否有读取权限。另外,如果模型需要特定的tokenizer或配置文件,这些也需要包含在导出的模型中。 最后,用户可能需要测试部署后的模型,发送请求验证是否正常工作。比如使用curl或Python客户端发送请求到vLLM的API端点,检查响应是否正确。 总结,我需要逐步引导用户完成从Ollama获取模型、导出模型、配置vLLM并部署的过程,同时注意可能的兼容性和路径问题,并提供验证方法确保部署成功。</think>### 通过vLLM部署Ollama拉取的通义千问模型步骤 #### 1. 前置条件准备 - 确保已安装Ollama并完成基本配置,例如修改模型存储路径(通过环境变量`OLLAMA_MODELS`)[^1] - 安装vLLM框架及依赖项: ```bash pip install vllm ``` #### 2. 模型获取与转换 - 从Ollama拉取/创建Qwen模型: ```bash ollama pull qwen # 假设存在官方Qwen模型 # 若需要自定义模型,需创建Modelfile ollama create qwen -f ./Modelfile ``` - 导出模型文件(需确认Ollama模型存储路径): ```bash cp ~/.ollama/models/qwen /target/path ``` #### 3. vLLM服务部署 - 启动vLLM服务指定模型路径: ```bash vllm-server --model /target/path/qwen --tokenizer qwen-tokenizer ``` *注:需确保模型格式为Hugging Face支持的架构,否则需进行格式转换* #### 4. 接口调用验证 使用Python测试推理: ```python from vllm import LLM llm = LLM(model="/target/path/qwen") output = llm.generate("解释量子计算") print(output[0].text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值