L2-029 特立独行的幸福

本文探讨了如何通过编程找出给定区间内的特立独行幸福数,这些数在有限区间内不依赖其他数字,且若为素数,独立性会翻倍。核心算法利用book数组记录状态,寻找独立幸福数并计算独立性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:

输入在第一行给出闭区间的两个端点:1<A<B≤104。

输出格式:

按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD

输入样例 1:

10 40

输出样例 1:

19 8
23 6
28 3
31 4
32 3

注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。

输入样例 2:

110 120

输出样例 2:

SAD

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

思路:用book数组来记录每个数据的状况,如果他能推出来1,但是他也能被退出来我们book里面存储的就是-2,如果他不能推出-1,我们就存储0,如果可以推出1并且在该范围内不能被退出来,就是他的独立性的值,然后用map来存储之前的值,如果重复出现我们就跳出循环,否则按照他的步骤执行,期间如果出现原来已经认定的无法导出1的也返回,如果目前是特立独行则把之前出现的数都标记为-2,最后在此循环,大于0的即为所求。

代码:

#include <bits/stdc++.h>
using namespace std;
int book[10010];
bool sushu(int n){
	if(n==1)return false;
	if(n==2)return true;
	int i;
	for(i=2;i<=sqrt(n);i++){
		if(n%i==0)return false;
	}
	return true;
}
int u;
void judge(int n){
	if(book[n]==0)return ;
	if(book[n]==-2)return ;
	unordered_map<int,int>mymap;
	while(1){
		int s=0;
		while(n){
			int k=n%10;
			s+=k*k;
			n/=10;
		}
		if(book[s]==0)return ;
		if(s==1){
			unordered_map<int,int>::iterator it;
			for(it=mymap.begin();it!=mymap.end();it++){
				book[it->first]=-2;
			}
			book[u]=mymap.size()+1;//是算上自己的
			if(sushu(u))book[u]*=2;
			return ;
		}
		if(mymap.count(s)){book[s]=0;return ;}
		else {
			mymap[s]=1;
			n=s;
		}
	}
}
int main(){
	int l,r;
	fill(book,book+10010,-1);
	scanf("%d%d",&l,&r);
	int i;
    bool flag=0;
	for(i=l;i<=r;i++){
		u=i;
		judge(i);
	}
	for(i=l;i<=r;i++){
		if(book[i]>0){
            flag=1;
			printf("%d %d\n",i,book[i]);
		}
	}
    if(flag==0)printf("SAD");
	system("pause");
}

7-6 特立独行幸福 (25分) 对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 822 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行幸福数,其独立性为 2×4=8。 另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、4220、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。 本题就要求你编写程序,列出给定区间内的所有特立独行幸福数和它的独立性。 输入格式: 输入在第一行给出闭区间的两个端点:1<A<B≤10 ​4 ​​ 。 输出格式: 按递增顺序列出给定闭区间 [A,B] 内的所有特立独行幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。 如果区间内没有幸福数,则在一行中输出 SAD。 输入样例 1: 10 40 输出样例 1: 19 8 23 6 28 3 31 4 32 3 注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行幸福数。 输入样例 2: 110 120 输出样例 2: SAD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值