电动汽车集群并网的分布式鲁棒优化调度模型(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

电动汽车集群并网的分布式鲁棒优化调度模型研究

一、研究背景与意义

二、研究内容

1. 电动汽车集群与分布式能源的协同优化问题

2. 分布式鲁棒优化调度模型的构建

(1)多面体不确定性集合的构造

(2)确定性优化模型的建立

(3)鲁棒对等转换与模型解耦

3. 用户需求偏好的考虑

三、研究方法

1. 数据收集与处理

2. 模型求解算法

3. 仿真验证

四、研究结果与分析

1. 模型有效性验证

2. 可变参量对鲁棒优化的影响分析

五、研究结论与展望

1. 研究结论

2. 研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

 随着可再生能源(Renewable Energy Source, RES)的渗透率不断提高,RES 固有的间歇性对电

力系统稳定运行提出新的挑战[1]。近年来电动汽车 (Electric Vehicles, EV)的保有量持续大幅增长[2], EV 集群(EV Cluster, EVC)并网将进一步加剧这个挑战[3]。并网 EVC 作为一种灵活性资源[4],兼具荷、源双重属性,利用 EVC 的灵活性可削弱 RES间歇性对电网运行的不利影响[5]。并网 EVC 与 RES的协同调控已成为提升电网经济性与稳定性的有力手段[6]。

关于 EVC 与 RES 的协同优化与控制,已有广泛而深入的研究,且现有成果已证明两者协同优化

可提高 RES 消纳率[7]、降低系统成本[8]、提升电网稳定性[9]等。本质上,EVC 与 RES 的协同优化是不确定环境下极具复杂性的优化问题[10],首先是 RES固有间歇性与 EVC 功率需求波动的双重不确定性;其次不确定性均具有空间、时间多维度特征,表现为不同区域的 RES 电站在多时段内的功率波动,EV用户入网区域及并、离网时段的随机性等。针对两者协同优化中的复杂不确定性,可采用随机规划[11]和鲁棒优化[12]两类方法。随机规划须预知不确定变量的概率分布特征,但因实际中其分布特征难以准确获取,且计算复杂度高,随机规划具有明显的应用局限性。鲁棒优化则不需获取不确定变量的分布特征,仅对其采用封闭凸集描述,优化目标对于凸集上的任意点,都能确保鲁棒最优解。基于鲁棒优化方法,文献[13-14]均考虑风光出力不确定性,并协同 EVC 有序充电建立鲁棒控制模型,但忽略了 EVC 的不确定性;文献[15]考虑 EV的不确定性制定优化调度策略,但未利用 EV 的电源属性,且优化策略未与 RES 协同;文献[16]考虑RES、市场电价的不确定性,提出多重不确定性下的鲁棒优化策略,但未深入讨论 EVC 的规模及需求的不确定性,适用性有待商榷。文献[17-18]建立的鲁棒优化模型考虑了 RES 与 EVC 的双重不确定性,但不适用于大规模 EVC 的并网场景。现有研究虽已考虑到 RES 与 EVC 的双重复杂不确定性,但 EVC多局限于小规模,且随着 EVC 规模的逐渐扩大,集中式优化将难以应对“维度灾难”。此外,EV 控制模型在现有研究中均是基于用电需求、充放电约束建立,虽然保证了 EV 用户的用电需求,但控制模型显然忽略了用户的需求偏好。实际场景中 EV 用户作为高度自主性个体,其 EV 不一定参与调度策略,忽略 EV 用户的偏好与现实场景存在必然矛盾。

电动汽车集群并网的分布式鲁棒优化调度模型研究

一、研究背景与意义

随着可再生能源(如风能和太阳能)在电力系统中的渗透率不断提高,其固有的间歇性对电网的稳定运行提出了新的挑战。同时,电动汽车(EV)的保有量持续大幅增长,电动汽车集群(EVC)并网将进一步加剧这一挑战。并网EVC作为一种灵活性资源,兼具荷、源双重属性,利用其灵活性可削弱可再生能源间歇性对电网运行的不利影响。因此,电动汽车集群与分布式能源的协同调控已成为提升电网经济性与稳定性的有力手段。

二、研究内容

1. 电动汽车集群与分布式能源的协同优化问题

本质上,电动汽车集群与分布式能源的协同优化是不确定环境下极具复杂性的优化问题,主要体现在以下两个方面:

  • 双重不确定性:可再生能源的固有间歇性与电动汽车集群的功率需求波动。
  • 多维度特征:不确定性具有空间、时间多维度特征,表现为不同区域的可再生能源电站在多时段内的功率波动,以及电动汽车用户入网区域及并、离网时段的随机性。

2. 分布式鲁棒优化调度模型的构建

针对上述复杂不确定性,可采用随机规划和鲁棒优化两类方法。由于随机规划须预知不确定变量的概率分布特征,但实际中其分布特征难以准确获取,且计算复杂度高,因此具有明显的应用局限性。而鲁棒优化则不需获取不确定变量的分布特征,仅对其采用封闭凸集描述,优化目标对于凸集上的任意点都能确保鲁棒最优解。

(1)多面体不确定性集合的构造

在时间、空间、功率区间三个维度构造表征可再生能源及电动汽车集群波动特征的鲁棒多面体不确定集合。具体步骤如下:

  • 设定系统参数:设系统内可再生能源电站的数量为sN,其中光伏电站数为vN,风机电站数为wN。
  • 建立功率区间:设电站i在时段t的功率区间为[ζ_i,t-, ζ_i,t+]。
  • 引入鲁棒控制系数:为平衡鲁棒优化模型的保守度,引入鲁棒控制系数RSΓ和RTΓ,在空间、时间及功率区间三个维度建立鲁棒条件下的多面体集合Rψ。
(2)确定性优化模型的建立

以最小化系统运行成本为目标,建立确定性优化模型。该模型的目标函数包括分布式发电(DG)的运行成本、配网与上级电网的功率交互成本、电动汽车集群调度补偿成本等。

(3)鲁棒对等转换与模型解耦

通过鲁棒对等转换,将确定性优化问题转换成鲁棒优化问题。采用交替方向乘子(ADMM)算法对鲁棒优化模型进行解耦,实现电动汽车集群与其他分布式能源的协同分布式迭代求解。

3. 用户需求偏好的考虑

实际场景中,电动汽车用户作为高度自主性个体,其电动汽车不一定参与调度策略。因此,在模型构建中需考虑用户的需求偏好。具体方法如下:

  • 用户分类:根据用户的需求偏好,将并网电动汽车分为三类:第一类用户并网功率不可调节,无论在高峰时段或低谷时段并网,均以额定功率充电至期望荷电状态(SOC);第二类和第三类用户并网功率可调节,在负荷及电价高峰时段,第二类用户降低充电功率或延缓充电,第三类用户放电。
  • 控制模型建立:针对不同类型用户,建立相应的控制模型,确保在优化调度中满足用户的个性化需求。

三、研究方法

1. 数据收集与处理

  • 数据来源:收集电动汽车的历史充电数据、可再生能源电站的功率输出数据等。
  • 数据处理:对收集到的数据进行预处理,包括数据清洗、缺失值填充、异常值处理等。

2. 模型求解算法

采用ADMM算法对鲁棒优化模型进行解耦迭代求解。ADMM算法是一种有效的分布式优化算法,能够处理多个优化子问题,通过迭代求解得到整个系统的一致性解。

3. 仿真验证

利用MATLAB和YALMIP工具箱进行编程实现,通过仿真验证所提模型的有效性和实用性。仿真算例设置不同的场景和参数,分析模型在不同条件下的性能表现。

四、研究结果与分析

1. 模型有效性验证

通过仿真算例验证了所提分布式鲁棒优化调度模型在最小化系统成本的同时兼顾了电动汽车用户的需求偏好。算例结果表明,与集中式优化相比,分布式优化具有更高的求解效率,且能够应对大规模电动汽车集群的并网挑战。

2. 可变参量对鲁棒优化的影响分析

分析了模型中可变参量(如功率区间预测误差、鲁棒控制系数、三类电动汽车占比等)对鲁棒优化结果的影响。结果表明:

  • 功率区间预测误差:随着预测误差的增大,系统的鲁棒成本也逐渐增大。
  • 鲁棒控制系数:鲁棒控制系数取值越大,模型越保守;取值越小,模型越激进。
  • 三类电动汽车占比:系统总成本随着第二类和第三类电动汽车占比的减小而增大,且第三类电动汽车占比对系统总成本的影响比第二类显著。

五、研究结论与展望

1. 研究结论

  • 提出了考虑用户需求偏好的电动汽车集群并网的分布式鲁棒优化调度模型。
  • 在时间、空间、功率区间三个维度构造了表征可再生能源及电动汽车集群波动特征的鲁棒多面体不确定集合。
  • 采用ADMM算法实现了模型的分布式迭代求解,并通过仿真验证了模型的有效性和实用性。

2. 研究展望

后续研究将进一步关注单台电动汽车的动态不确定性(如电动汽车用户与调度中心的实时互动、用户调整阈值、并网方式切换等),聚焦实时优化调度策略的研究。同时,将探索如何将所提模型应用于实际电网中,为电网的经济运行和稳定运行提供有力支持。

📚2 运行结果

以下为原文结果:对比图1,可见程序和原文均实现了不同类型电动汽车的调度结果,因为数据的差异和电动汽车接入时间的随机性,优化结果必然存在差异,但从理论来看,两个结果都很完美!

部分代码:

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]许刚,张丙旭,张广超.电动汽车集群并网的分布式鲁棒优化调度模型[J].电工技术学报,2021,36(03):565-578.DOI:10.19595/j.cnki.1000-6753.tces.200531.

🌈4 Matlab代码实现

### 电动汽车集群鲁棒优化方法研究 #### 基于MATLAB和YALMIP的鲁棒优化调度方案 为了应对电动汽车集群在实际应用中的不确定性因素,研究人员提出了基于MATLAB和YALMIP编程的方法来实现电动汽车集群的优化调度[^1]。这种方法不仅能够处理复杂的约束条件,还能通过引入不确定性的描述变量提高系统的鲁棒性和适应能力。 #### 分布式鲁棒优化模型及其求解算法 针对电动汽车集群并网问题,有学者构建了分布式鲁棒优化模型,并采用了交替方向乘子法(ADMM)作为主要求解工具。该模型利用鲁棒对等转换技术,在保证计算效率的同时增强了对于外部扰动的抵抗性能[^2]。此方法特别适用于大规模电力系统中多个主体间的协同工作场景。 #### 动态优化策略与粒子群算法的应用 除了上述提到的技术手段外,还有研究者探索了基于粒子群算法(Particle Swarm Optimization, PSO) 的动态优化策略用于解决电动车充电过程中的资源分配难题。PSO作为一种启发式全局搜索机制可以有效地寻找最优解路径,从而达到降低运营成本的目的[^3]。 ```matlab % 粒子群算法框架示例 function [bestPosition,bestFitness]=pso(fitnessFunction,nVars,options) % 初始化种群位置和速度... while notConverged for i=1:numParticles currentFitness(i)=fitnessFunction(particles(:,i)); if currentFitness(i)<personalBestValue(i) personalBestPosition(:,i)=particles(:,i); personalBestValue(i)=currentFitness(i); if personalBestValue(i)<globalBestValue globalBestPosition=personalBestPosition(:,i); globalBestValue=personalBestValue(i); end end updateVelocityAndPosition(); end checkConvergenceCriteria(); end end ``` #### 实际案例分析及代码实现 具体来说,《电工技术学报》上发表的一篇文章详细介绍了如何运用所提出的分布式鲁棒优化调度模型来进行仿真验证。文中给出了完整的Matlab代码实例,证明了这一理论框架的有效性以及其在未来智能电网建设方面的重要意义[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值