【无人机协同】基于遗传算法GA的同构异构无人机UAV协同搜索研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于遗传算法GA的同构异构无人机UAV协同搜索研究

摘要

无人机(UAV)协同搜索在军事侦察、环境监测、灾害救援等领域具有广泛应用前景。同构无人机具有相似的性能和能力,而异构无人机则具备不同的功能,如地形分析、障碍物处理等。本文提出了一种基于遗传算法(GA)的同构异构无人机协同搜索策略,通过合理的染色体编码、适应度函数设计以及遗传操作,实现了对无人机协同搜索路径的有效优化。仿真实验结果表明,该策略能够显著提高搜索效率和覆盖范围,特别是对于异构无人机协同搜索问题,其优势更加明显。

1. 引言

随着无人机技术的快速发展,无人机协同搜索已成为研究热点。相比于单机搜索,无人机协同搜索可以显著提高搜索效率、覆盖范围以及任务可靠性。然而,由于无人机种类、性能差异以及任务复杂性等因素的影响,实现高效的无人机协同搜索具有相当大的挑战性。特别是,同构无人机和异构无人机协同搜索策略的设计,需要考虑不同类型的无人机之间的互补性和协同性,以最大限度地发挥整体效能。

传统的路径规划算法,如A*算法、Dijkstra算法等,在处理简单的无人机搜索问题时表现良好,但面对多无人机协同搜索,特别是异构无人机协同搜索时,计算复杂度急剧增加,难以找到全局最优解。因此,需要寻求一种能够有效处理复杂约束条件,并具备全局搜索能力的优化算法。遗传算法(GA)作为一种全局优化算法,具有鲁棒性强、并行性好等优点,非常适合解决复杂的无人机协同搜索路径规划问题。

2. 问题描述

2.1 同构与异构无人机协同搜索

同构无人机具有相似的性能和能力,如相同的飞行速度、续航时间、传感器探测范围等。在协同搜索中,同构无人机可以通过协调飞行路径、分工合作,如一些负责搜索区域的边缘,另一些深入内部,形成互补搜索网络。异构无人机则具备不同的功能,如有的专门用于地形分析,有的配备专用传感器处理特定类型的障碍物,或者承担救援任务。异构无人机的优势在于可以应对多种复杂情况,提高搜索任务的灵活性和适应性。

2.2 协同搜索目标

无人机协同搜索的目标是在给定的搜索区域内,找到所有目标点,并优化搜索路径,以最小化总飞行距离、能耗和任务完成时间。同时,需要考虑无人机之间的通信与协作,以及搜索目标的动态变化等因素。

3. 基于遗传算法的协同搜索策略

3.1 染色体编码

针对同构异构无人机协同搜索问题,染色体编码需要包含每架无人机的飞行路径信息。为了方便处理异构无人机,可以根据不同无人机的性能参数,调整基因的长度和表达方式。例如,对于续航时间较短的无人机,其染色体长度可以较短;而对于探测范围较大的无人机,其基因可以代表更大的区域范围。

具体而言,可以采用实数编码方式表示每架无人机的飞行路径。每条染色体由多个基因组成,每个基因代表一个无人机在某时刻访问的顶点(搜索区域中的离散点)。为了区分同构和异构无人机,可以在染色体中添加标识位,用于标识无人机的类型。

3.2 适应度函数设计

适应度函数用于评价每条染色体的优劣,引导遗传算法向最优解方向进化。针对无人机协同搜索问题,适应度函数可以综合考虑以下因素:

  • 目标覆盖率:所有目标点都被覆盖的程度。
  • 总飞行距离:所有无人机总飞行距离之和。
  • 能耗:所有无人机的总能耗。
  • 任务完成时间:所有无人机完成任务所需的时间。

适应度函数可以表示为:

其中,w1​,w2​,w3​,w4​ 为权重系数,根据实际需求进行调整。

3.3 遗传操作

3.3.1 选择

采用轮盘赌选择法选择优秀的染色体。根据染色体的适应度值,计算每个染色体被选中的概率,适应度值越高的染色体被选中的概率越大。

3.3.2 交叉

采用算术交叉或均匀交叉等方法,在父代染色体之间进行基因交换。交叉操作可以有效地将父代染色体的优秀基因传递给子代,从而提高种群的整体质量。例如,在算术交叉中,可以按照以下公式生成子代染色体:

子代1=α×父代1+(1−α)×父代2

子代2=(1−α)×父代1+α×父代2

其中,α 为交叉系数,取值范围为 [0, 1]。

3.3.3 变异

采用高斯变异或均匀变异等方法,对染色体进行随机扰动。变异操作可以增加种群的多样性,防止算法陷入局部最优解。例如,在高斯变异中,可以按照以下公式对基因进行变异:

新基因=原基因+σ×N(0,1)

其中,σ 为变异强度,N(0,1) 为标准正态分布随机数。

3.4 算法流程

基于遗传算法的同构异构无人机协同搜索策略的算法流程如下:

  1. 初始化种群:随机生成一定数量的染色体,形成初始种群。初始种群的质量对遗传算法的收敛速度和最终解的质量具有重要影响。
  2. 评估适应度:根据适应度函数,计算每个染色体的适应度值。
  3. 选择父代:根据适应度值,选择一定数量的父代染色体,作为下一代的基因来源。
  4. 交叉产生子代:通过交叉操作,将父代染色体的基因信息进行组合,生成一定数量的子代染色体。
  5. 变异操作:对子代染色体的基因信息进行变异,引入新的基因信息,增加搜索空间。
  6. 评估适应度:计算新生成的子代染色体的适应度值。
  7. 选择存活个体:根据适应度值,选择一定数量的子代染色体作为下一代的种群。
  8. 判断终止条件:判断是否满足终止条件(如达到最大迭代次数、找到满足预定适应度值的解、或者种群在连续多代中没有显著的改进)。如果满足,则输出最优解;否则返回步骤3。

4. 仿真实验与结果分析

4.1 实验设置

为了验证所提出算法的有效性,进行了仿真实验。实验中,模拟了不同数量、不同类型的无人机在不同大小的搜索区域中进行协同搜索。搜索区域被离散化为一个图 G=(V,E),其中 V 表示图的顶点集合,代表搜索区域中的离散点;E 表示图的边集合,代表顶点之间的连接关系。每架无人机的路径可以表示为一个顶点序列。

实验参数设置如下:

  • 迭代次数:100
  • 种群大小:50
  • 无人机数量:10(其中一半同构,一半异构)
  • 搜索区域:[-100, 100, -100, 100]
  • 目标点数量:3
  • 目标点位置:(20, 30), (-50, -60), (70, 80)

4.2 实验结果

实验结果表明,与传统的路径规划算法相比,基于遗传算法的协同搜索策略能够有效地提高搜索效率和覆盖范围。特别是对于异构无人机协同搜索问题,该策略能够充分利用不同无人机的性能差异,实现优势互补,从而显著提高搜索效果。

图1展示了遗传算法在不同迭代次数下的最优适应度值变化曲线。从图中可以看出,随着迭代次数的增加,最优适应度值逐渐减小,说明算法在不断优化搜索路径。图2展示了无人机协同搜索的路径规划结果,可以看出无人机能够有效地覆盖搜索区域,并找到所有目标点。

5. 结论与展望

5.1 结论

本文提出了一种基于遗传算法的同构异构无人机协同搜索策略,通过合理的染色体编码、适应度函数设计以及遗传操作,实现了对无人机协同搜索路径的有效优化。仿真实验结果表明,该策略能够显著提高搜索效率和覆盖范围,特别是对于异构无人机协同搜索问题,其优势更加明显。

5.2 展望

未来的研究可以进一步改进适应度函数,使其能够更好地适应不同类型的搜索任务和环境。同时,可以探索更有效的遗传操作策略,提高算法的收敛速度和寻优能力。此外,还可以考虑实际环境中的约束条件,如障碍物、风速等因素,将算法应用于实际的无人机协同搜索任务中,进行更全面的性能评估。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]田菁,陈岩,沈林成.不确定环境中多无人机协同搜索算法[J].电子与信息学报, 2007, 29(10):4.

[2]罗德林,吴顺祥,段海滨,等.无人机协同多目标攻击空战决策研究[D].系统仿真学报编辑部,2008.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值