先看效果!!!目前跑通的是多链路压测(应该是),我一开始跑通了jmeter的压测,但是jmeter多链路我感觉有点费劲,然后就直接用python写脚本,发现操作起来更简单,还有locust的图形界面。
特性 | 多链路压测 |
---|---|
接口数量 | 多个关联API组合 |
测试目的 | 验证业务流程整体性能 |
典型场景 | 登录 → 发送消息 → 获取历史记录(必须先登录获取token才能进行后续操作) |
复杂度 | 高(需处理参数传递/依赖关系) |
测试是否符合 | ✅ 符合(覆盖了典型用户从登录到聊天的完整路径) |
1. 背景
在实际项目中,我们需要对聊天接口进行压力测试,验证其在高并发下的稳定性。本文使用Python的Locust框架,模拟用户登录、发送问题和获取历史记录的全流程压测。
2. 核心代码解析
(1)环境准备
from gevent import monkey
monkey.patch_all() # 让Locust支持高并发
import requests
from locust import HttpUser, task, between
import pandas as pd
import uuid
import random
import json
import time
(2)用户行为模拟
class ChatUser(HttpUser):
wait_time = between(1, 2) # 用户操作间隔1-2秒
host = "https://your-api-endpoint.com" # 替换为你的API地址
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.token = None # 用户登录token
self.user_id = None # 用户ID
self.phone_base = 10000000000 # 模拟手机号
self.questions = self.load_questions() # 加载测试问题
self.session = requests.Session() # 复用Session
(3)核心任务
① 用户登录
@task(1) # 权重1(登录频率较低)
def login(self):
phone = str(self.phone_base + random.randint(1, 10000)) # 随机生成手机号
payload = {"phone": phone, "code": ""} # 替换为你的登录参数
with self.client.post("login", json=payload, name="用户登录") as response:
if response.status_code == 200:
self.token = response.json()["data"]["token"] # 存储token
print("用户登录成功!")
② 发送问题 + 获取历史记录
@task(3) # 权重3(主要测试聊天接口)
def chat_operation(self):
if not self.token:
self.login() # 未登录则先登录
# 1. 发送问题(SSE流式响应)
question = random.choice(self.questions)
headers = {"Authorization": f"Bearer {self.token}"}
payload = {"uid": str(u.d4()), "message": }
with self.client.post("/chat/send", json=payload, headers=headers, name="发送问题") as send_response:
if send_response.status_code == 200 and "data:" in send_response.text:
print("问题发送成功!")
else:
send_response.failure("发送失败")
# 2. 获取历史记录
with self.client.get("/chat/history", headers=headers, name="获取对话历史") as history_response:
if history_response.status_code == 200:
print("历史记录获取成功!")
3. 如何运行?
locust -f chat_test.py --headless -u 50 -r 5 -t 5m --only-summary
-
-u 50
:模拟50个并发用户 -
-r 5
:每秒启动5个用户 -
-t 5m
:持续运行5分钟 -
--only-summary
:仅显示最终统计结果
4.关键优化点
-
SSE流式响应处理:聊天接口可能采用Server-Sent Events(SSE),需检查
data:
格式。 -
动态会话ID:每次聊天使用
uuid.uuid4()
生成唯一会话ID,避免冲突。 -
问题池随机选择:可自定义问题列表,模拟真实用户行为
5. 总结
-
Locust适合模拟高并发聊天场景。
-
动态参数(如手机号、会话ID)能有效避免重复请求。
-
完整代码已适配通用场景,替换API地址即可使用。
6.压测前准备
1.环境隔离
-
✅ 使用独立测试环境(避免影响生产)
-
✅ 数据库使用测试库或影子库(Shadow DB)
-
✅ 关闭非必要后台服务(日志收集、监控上报等
2.数据准备
-
📊 参数化测试数据(避免重复数据干扰)
3.安全红线
-
🚫 严禁直接压测生产环境(除非有熔断保护)
-
🔐 测试账号使用虚拟数据(避免真实用户受影响)
-
⚠️ 避免长时间持续压测(通常单次不超过30分钟
总结,我只是简单跑了10个并发,跑通脚本和验证低并发的情况。