🔍 当指数套路遇上对数侦探:一场关于 aa3=3a^{a^3} = 3aa3=3 的数学悬疑剧
今天咱们要解一道2025年北京大学强基计划题,表面是"指数叠叠乐",实际却是函数"剧本杀".
问题描述
已知正数 aaa 满足 aa3=3a^{a^{3}} = 3aa3=3,求 a6a^{6}a6.
这个方程乍看像在炫技:“我指数套指数,就问你怕不怕?”——但它藏了个超级妙招,我们只需 a6a^6a6,而不是硬算aaa的值.
破题思路
⚠️ 注意! 看到多重指数 aa3a^{a^3}aa3 时,这不请"对数"出山都说不过去啊!
(对数的超能力是把指数拍平成乘法✅)
想象一下——方程 aa3=3a^{a^3} = 3aa3=3 像只炸毛的猫🐱,对数一来它就瘫了:
ln(aa3)=ln3 ⟹ a3⋅lna=ln3\ln(a^{a^3}) = \ln 3 \implies a^3 \cdot \ln a = \ln 3 ln(aa3)=ln3⟹a3⋅lna=ln3
就这?但等等...左边这个 a3⋅lnaa^3 \cdot \ln aa3⋅lna 长得也太像’函数爆款单品’ tlntt \ln ttlnt 了吧?
关键推导
现在进入高能环节!我们给方程"整形"一下:
a3⋅lna=ln3 ⟹ a3⋅ln(a3)=3ln3,a^3 \cdot \ln a = \ln 3 \implies a^3 \cdot \ln(a^3) = 3 \ln 3, a3⋅lna=ln3⟹a3⋅ln(a3)=3ln3,
这是因为ln(a3)=3lna\ln(a^3) = 3 \ln aln(a3)=3lna.
💡 妙招时刻:构造辅助函数 f(t)=tlnt\boxed{f(t) = t \ln t}f(t)=tlnt,
原方程秒变 f(a3)=3ln3=f(3)f(a^3) = 3 \ln 3 =f(3)f(a3)=3ln3=f(3),
你猜这函数有啥妙处?它专治各种"方程不服"!
分析函数性质—— f(t)f(t)f(t) 开始"秀演技"
- 看右边 3ln3>03 \ln 3 > 03ln3>0,而当且仅当 t>1t > 1t>1时f(t)>0f(t)>0f(t)>0 ;
(先看函数值正负 📈) - 再求导f′(t)=lnt+1>0f'(t) = \ln t + 1>0f′(t)=lnt+1>0在[1,+∞)[1,+ \infty)[1,+∞)上恒成立,
故f(t)f(t)f(t)在[1,+∞)[1,+ \infty)[1,+∞)上单增.
(再看函数单调性 📈)
💡 破案逻辑:由于 f(t)f(t)f(t) 仅在 (1,+∞)(1, +\infty)(1,+∞)函数值为正,且此时严格单调递增,
故原方程有且仅有唯一解!
⚠️ 最终一击:直接宣判a3=3.a^3 = 3.a3=3.
于是终极目标 a6a^6a6 现形:
a6=(a3)2=32=9.a^6 = (a^3)^2 = 3^2 = 9.a6=(a3)2=32=9.
最终答案 & 防杠验证
📌 结论:a6=9a^6 = \boxed{9}a6=9
✅ 验证:若 a3=3a^3 = 3a3=3,则原方程 aa3=a3=3a^{a^3} = a^3 = 3aa3=a3=3 —— 成立!
🌟 彩蛋:
- 如果题目改成 正数aaa满足aan=ma^{a^n} = maan=m,你能否推出 a2na^{2n}a2n 的通用表达式?
- 题目限定正数 aaa,负底数的指数方程可能定义混乱(可能会触发血压警告⚠️)
- 你觉得函数 f(t)=tlntf(t) = t \ln tf(t)=tlnt 和"奶茶第二杯半价"哪个更让人心动?留言区见!