day02

1、题目
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1,ceil向上取等

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
    float a;
    char b ;
    int ret = 0;
    cin>>a>>b;
    if(a<=1)
    {
        ret+=20;
    }
    else 
    {
        ret+=20;
        a-=1;
        ret+=ceil(a);//ceil向上取整
    }
    if(b=='y') ret+=5;
    cout<<ret<<endl;
    return 0;
}

不用ceil

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
    float a;
    char b;
    int ret = 0;
    cin>>a>>b;
    if(a<=1)
    {
        ret +=20;
    }
    else {
        ret+=20;
        a-=1;
        if(a-(int)a>0) ret=ret+a+1;
        else ret+=a;
    }
    if(b=='y')
        ret+=5;
    cout<<ret<<endl; 
}

本道题判断逻辑想的不是很清楚,不熟悉ceil向上取整函数。

2、题目
在这里插入图片描述
算法原理:
动态规划
在这里插入图片描述
红色1代表到达i位置的第一种可能,红色2代表到达i位置的第2种可能.
1.状态表示
dp[i]表示:到达i位置时的最小花费
2.状态转移方程
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[1-2]);
//解释dp[i-1]+cost[i-1]代表到达i-1的花费和i-1位置的花费, dp[i-2]+cost[1-2]代表到达i-2的花费和i-2位置的花费。

#include <iostream>
using namespace std;
const int N = 1e5+10;
int n ;
long long  cost[N];
long long dp[N];
int main() {
  cin>>n;
  for (int i = 0; i<n; i++) {
    cin>>cost[i];
  }
   dp[0] = 0;
    dp[1] = 0;
  for(int i = 2;i <= n;i++)
  {
    dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
  }
  cout<<dp[n]<<endl;
  return 0;
  }
// 64 位输出请用 printf("%lld")

动态规划不熟悉。

3、题目
在这里插入图片描述

题意:
给你两个数组,找到包含这两个数组的最短距离
在这里插入图片描述

解法一:暴力解法会超时

解法二:贪心(dp)
eg:
前驱:目标位置往前到另一个目标位置的下标。
在这里插入图片描述

在这里插入图片描述
prev1:QWER向左前驱找到目标666的下标
prev2:666向左前驱找到目标QWER的下标
ret:最短距离。

#include <iostream>
#include<string>
using namespace std;

int main() {
  int n;
  string str1,str2,str;
  cin>>n;
  cin>>str1>>str2;
  int prev1 = -1,prev2 =-1;
  int ret = 0x3f3f3f3f;//(不存在)
  for(int i = 0;i<n;i++)
  {
    cin>>str;
    if(str==str1)//去前面找str2
{
       if(prev2!=-1)
       {
        ret=min(ret,i-prev2);
       }
       prev1 = i;
}
else if(str==str2)
{
    if(prev1!=-1)//去找str1
    {
        ret = min(ret,i-prev1);
    }
    prev2 = i;
}
  }
   if(ret == 0x3f3f3f3f) cout<<-1<<endl;
    else cout<<ret<<endl;
    return 0;
}
// 64 位输出请用 printf("%lld")

以上就是经典面试题,可反复练习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒羊羊大王&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值