1、
答案:选D.
解析:
选项 A:二叉搜索树最左侧的节点一定是最小的
二叉搜索树的定义:在二叉搜索树中,对于任意节点:
左子树中的所有节点值都小于该节点的值。
右子树中的所有节点值都大于该节点的值。
最左侧节点的性质:由于左子树的值总是小于当前节点的值,因此不断向左遍历,最终到达的节点将是整个树中最小的节点。
结论:选项 A 是正确的。
选项 B:二叉搜索树最右侧的节点一定是最大的
最右侧节点的性质:由于右子树的值总是大于当前节点的值,因此不断向右遍历,最终到达的节点将是整个树中最大的节点。
结论:选项 B 是正确的。
选项 C:对二叉搜索树进行中序遍历,一定能够得到一个有序序列
中序遍历的定义:中序遍历的顺序是“左子树 -> 根节点 -> 右子树”。
二叉搜索树的中序遍历结果:由于二叉搜索树的性质,中序遍历的结果是一个递增的有序序列。
结论:选项 C 是正确的。
选项 D:二叉搜索树的查找效率为 O(log
2 N)
二叉搜索树的查找效率:
在平衡的二叉搜索树中,每次查找可以将搜索范围减少一半,因此查找效率为 O(log
2 N) 。
然而,如果二叉搜索树退化成一条链表(即完全不平衡的情况),查找效率会退化为 O(N) 。
结论:选项 D 的表述不准确,因为它没有说明是否是平衡的二叉搜索树。如果是平衡的二叉搜索树,查找效率确实是 O(log 2 N) ,但如果不是平衡的,效率可能更低。
2、
答案:B
解析:根据二叉搜索树性质,找有序直接选B.
3、
答案:选c。
解析:
4、
答案:A
解析:
中序遍历:左根右;又根据二叉搜索树,左子树节点比根节点小,右子树节点比根节点大,插入8就比较根节点,比他大就插入在右侧,比他小就插入在左侧。
注意:
二叉搜索树是唯一画不了图的。
以上就是二叉搜索树练习的全部内容了。