pytorch图像分类:卷积神经网络CNN

前言

        学习资料来自b站,up主的讲解非常详细,很容易听懂。

        基础知识的视频链接为:

        1.1 卷积神经网络基础_哔哩哔哩_bilibili 

        1.2 卷积神经网络基础补充_哔哩哔哩_bilibili 

         代码实现的视频链接为:

        2.1 pytorch官方demo(Lenet)_哔哩哔哩_bilibili

        up主将代码和ppt放在了他的Github: 

GitHub - WZMIAOMIAO/deep-learning-for-image-processing: deep learning for image processing including classification and object-detection etc.icon-default.png?t=N7T8https://github.com/WZMIAOMIAO/deep-learning-for-image-processing


1 基础知识篇

1.1 卷积神经网络

1.2 全连接层

 

        左边图的每个像素都有3个数值,也就是RGB,首先需要进行灰度化得到中间的图,此时每个像素都只有一个分量,最后进行二值处理就得到右边的图像了,只有黑白。

        使用5*3的滑动窗口进行滑动,每滑动到一个地方就计算白色像素占滑动窗口位置的比例,对于不满足5*3的地方,可以进行补0处理,最后得到的是一个5*5的矩阵。

       将5*5的矩阵按行展开拼接,得到25个元素的一维向量,就可以作为神经网络的输入层。

        对输出的数值进行one-hot编码,因为可能的数字一共10个,所以对0-9的数字进行编码:

        按照前面的分析,输入神经网络的节点数为25,输出的节点数为10。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值