前言
学习资料来自b站,up主的讲解非常详细,很容易听懂。
基础知识的视频链接为:
代码实现的视频链接为:
2.1 pytorch官方demo(Lenet)_哔哩哔哩_bilibili
up主将代码和ppt放在了他的Github:
1 基础知识篇
1.1 卷积神经网络
1.2 全连接层
左边图的每个像素都有3个数值,也就是RGB,首先需要进行灰度化得到中间的图,此时每个像素都只有一个分量,最后进行二值处理就得到右边的图像了,只有黑白。
使用5*3的滑动窗口进行滑动,每滑动到一个地方就计算白色像素占滑动窗口位置的比例,对于不满足5*3的地方,可以进行补0处理,最后得到的是一个5*5的矩阵。
将5*5的矩阵按行展开拼接,得到25个元素的一维向量,就可以作为神经网络的输入层。
对输出的数值进行one-hot编码,因为可能的数字一共10个,所以对0-9的数字进行编码:
按照前面的分析,输入神经网络的节点数为25,输出的节点数为10。