P5726 【深基4.习9】打分

本文介绍了一种计算选手比赛得分的方法,通过去除评委给出的最高和最低分,然后取剩余分数的平均值。适用于1000位评委的评分情况,代码示例展示了如何使用C++实现这一过程,输出结果保留两位小数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

现在有 n(n \le 1000)n(n≤1000) 位评委给选手打分,分值从 0 到 10。需要去掉一个最高分,去掉一个最低分(如果有多个最高或者最低分,也只需要去掉一个),剩下的评分的平均数就是这位选手的得分。现在输入评委人数和他们的打分,请输出选手的最后得分,精确到 2 位小数。

输入格式

输出格式

输入输出样例

输入 #1复制

5
9 5 6 8 9

输出 #1复制

7.67
#include<iostream>
using namespace std;
int main()
{
	int n;
	cin >> n;
	float num, sum = 0, min = 1000, max = 0;
	for (int i = 0; i < n; i++)
	{
		cin >> num;
		sum += num;
		if (num > max)
			max = num;
		if (num < min)
			min = num;

	}
	sum = sum - max - min;
	printf("%.2f", sum / (n - 2));
	return 0;
}

当前的回答无法直接提供 GP2549 4章练9的具体打分标准或解析,因为所提供的引用材料并未提及相关内容[^1]。然而,可以推测该问题可能涉及卷积神经网络 (CNN) 或者反向传播算法的相关知识点[^2]。 以下是关于如何解决此类问题的一般思路: ### 题目背景分析 如果假设此题目属于度学领域中的础部分,则它可能会考察学生对本概念的理解能力以及实际应用技巧。例如,在第四章节中提到的内容可能是围绕着前馈机制、权重更新规则或者误差计算等方面展开讨论。 #### 可能的知识点包括但不限于以下几个方面: - **正向传播过程**:描述数据通过每一层网络时所经历的操作序列及其数学表达形式。 - **激活函数的选择与特性**:探讨不同类型的激活函数(如ReLU, Sigmoid等)各自的优势劣势及适用场景。 - **损失函数定义**:解释目标变量预测值与真实值之间差异程度衡量方式的重要性,并列举几种常见类型。 - **后向传播原理**:阐述利用链式法则来高效地调整参数以最小化整体错误率的方法论依据。 ```python import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def relu(x): return np.maximum(0,x) # Example of forward pass with ReLU activation function input_data = np.array([2.0,-1.0]) weights = np.array([[0.5],[-0.7]]) bias = 0.3 output = relu(np.dot(input_data, weights)+ bias) print(output) ``` 上述代码片段展示了简单的前向传递过程中使用ReLU作为激活函数的一个例子。 ### 解决方案建议 针对这类考试题目,通常可以从以下几个角度入手准备答案并获得高分评价: 1. 准确无误地陈述理论要点; 2. 结合具体实例说明抽象概念的实际意义; 3. 展现出清晰条理性的推理链条支持结论得出; 4. 如果允许的话,适当加入图形辅助展示更加直观易懂的效果图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆水獭_(:_」∠)_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值