1.一般系统判断因果:取决性;如果先判断出线性又判断出时不变则可以用h(n)n小于0时等于0时无值判断(充要)
2.周期分数要乘分母变为整数,周期是kpi就没办法了
3.序列可分解乘奇偶两个序列
4.差分方程看线性,时不变,因果,稳定:
(1)输入x(n-n0)代入差分方程得到x(n-n0)一串这就是yn撇;把yn时移得到一串xn看看和上面的yn撇一样不
(2)线性同理,输入ax1+bx2得到一串xn就是yn撇;再把ax1单独输入,bx2单独输入后相加与yn撇比较
(3)因果没给出hn只能看方程了,看是否出现n+1,是否出现累加(累加的起点要讨论),一样讨论不出来的可以直接说一眼非因果(带上一句输出取决或不取决于未来的输入)
(4)稳定xn绝对值看输出就好,用M放缩,如果难放缩直接说|yn|<=M,因为有些是一眼看出来的
(5)累加和多乘sinwn这种一般是时变的,加了一个常数或平方一般是非线性的
5.R4(n)的意思是矩形序列
6.证明卷积从累加公式出发
7.递推法反求yn,h卷x,挨个写出y0,y1,总结出yn;hn也可递推出
8.对于有yn-1的差分方程判断线性时不变,只能结合初始状态,用递推法得出yn代入这些
9.采样信号的书写:
10.给方程求hn,明晰的情况可以直接把xn换成冲激,不要傻傻的只以为可以z变换,然后对于给定的hn和xn卷积就有yn了
11.DTFT有时会直接叫FT:注意这里的w已经变成大写欧米伽了=wT
共轭:
其他的等刷期末卷吧
12.反变换:把这个公式改成无穷加入X(w)
13.DFS把DTFT的无穷限变为周期限,同时把w离散化为2pi/N*k,
14.任意序列可分解为共轭对称序列和共轭反对称序列之和:xn=xen+xon;共轭对称序列xen=xe(-n)的共轭;,共轭对称实部是偶虚部是奇,共轭反对称的定义是人为定义出来的,实部奇虚部偶;
xen=1/2[xn+x*(-n)],xon=1/2[xn-x*(-n)],xn是实数则只需要反相
15.逆向拆解:
另外反求出实部或者虚部的信号后可以利用14点得到hn
16.z变换:LT的变种
17.循环卷积:输出矩阵=【x0 x最后 x最后减一。。。x1(下一行把x1放在最后直到x0在最前面)】输入矩阵;矩阵乘法不成立时xn末尾补0,
以上是h循环卷积x,h不动
18.IDFT:
19.运算次数计算:
DFT算法:计算一个Xk,0到N-1有N项相加所以需要N-1次加法,N次复数乘法;计算完N个DFT,需要加法N个*(N-1),乘法N个*N次,近似均为N^2次数。
基2FFT:把N点DFT分解成2个N/2的DFT:对于N/2-1有X(k)=X1k+WkN*X2(k),对于剩下一半,在这个公式换元成k+N/2得到=X1(k)-WkN*X2(k);
计算次数:乘法:2*(N/2)^2+N/2次约等于N^2/2;加法:N(N/2-1)+2N/2约等于N^2/2;注意加法要算到N个点,而乘法算N/2就好
M级运算乘法:N/2*M;加法:N*M,由于基2FFT一定是N=2^M次方才能分解所以,可以把M用log2N代入
20.为什么需要2^M个点,因为每分一次除以2,最少是2;同理基3是3^M;一共分解M次有M级,总的计算次数看单次乘M就好,
21.定点:把二进制数反过来,系数为当级的N取值一半,如2级为W0,2;因为每一级N都是除以2,利用可约性可以化简成统一为N;
22.DIT是先低点数后高点数,DIF频域抽取法则是先高后低,对半分xn后换元把高半部分的DFT累加界限变成和低半部分相同,再根据k取值不同(频域抽取由来)不是n取值不同分DFT为奇偶序列;虽然过程复杂但是画图来看和DIT镜像类似
23.会背:
24.快速卷积:当L点的循环卷积大于两个输入序列N+M-1时线卷积等于循环卷积;因为时域循环卷积等于频域DFT乘积,时域线卷积等于频域z变换乘积;DFT是Z变换单位圆的离散化取主值序列,频域离散化时域周期化以循环卷积的L点数为周期。。。
总之快速卷积就是利用DFT乘DFT后进行IDFT,需要时间为2倍FFT+N次复数乘法(考试的时候不用逆变换)Tc
25。采样速率为,采样点数除以Tc,由此得到输入信号频率要小于采样速率(即频率)的1/2
26.差分方程画框图:z变换+梅森,延时器用的越少越好
27.从时域上来看如果hn=+-h(N-n-1)则说明线性相位,这个时候套用课本的图就好,而一旦线性相位了要会背特点:一类是过原点线性,关于N-1/2奇对称,=-wt,二类是线性但是不过原点,-wt-pi/2有相移;
一类幅频奇数点关于w=0,pi,2pi偶对称,偶数点关于0,2pi;二类是奇数点0,pi,2pi奇对称,偶数是0,2pi
28.FIR的频率采样结构:频率采样点数是时域延拓的周期所以频域采样点数要大于N,有混叠不能适用IIR,给出频谱采样值画图,自己去背(还有带有修正系数的形式使之变成实数运算提高稳定性)
29.带反馈回路的结构:iir:背,转置也去背一下
30.给框图要逆变换直接取因果:
31.设计巴特沃斯:fp通带边界,ap通带允许的最大衰减,fs阻带边界,as阻带允许的最小衰减,wp到ws为过渡带;ap越小通带波纹越小,as越大阻带波纹越小;把w=0归一化为1,下降到1/根号2时称wc通带截止频率,此时归一化后的衰减a=3db,wc,wp,ws统称为边界频率;a公式为20lg(最大幅度,即w=0去除以该点幅度),通带是除以最小的那个点,阻带是除以最大的那个,归一化后分子变成1提一个负号出去。
IIR设计可以用间接和直接,FIR只能直接,模拟滤波器均为递归结构(无限冲激响应),而模拟设计比较成熟。
(1)损耗函数:-A(欧米伽)
(2)数字滤波器在这本书是小写w,模拟滤波器是大写欧米伽,大写欧米伽是对离散信号(抽样)的傅里叶或者拉氏,指标和数字滤波器一样,另外模拟滤波器喜欢把归一化后的分贝公式20提个2进去lg里是幅度平方,而求出幅度平方则可以求出Has*Ha(-s)s=j欧米伽,要求Hs是因果稳定的(物理可实现),单纯的幅度缺失相位特性,平方后可以通过配置零极点构建因果稳定且不会丢失相位。
-
幅度平方函数 提供了数学上可分解、物理上可实现的框架,是经典模拟滤波器设计的核心工具。
-
对数幅度 是分析工具,缺乏相位信息和分解能力,无法直接用于综合传递函数。
(3)巴特沃斯:2N个极点,等间隔分布在半径是欧米伽c的圆上,一旦点数确定极点确定,一旦极点确定选在s左半平面的就是目标系统函数
(4)巴特沃斯对Ha(s)利用欧米伽c进行了归一化,这是意义重大的,是描述有了统一,Ga(p)=1/(p-pk),p是归一化复变量,p=(s/欧米伽c)+j(欧米伽/欧米伽c),pk为归一化极点,sk=欧米伽c*pk,同样的给定欧米伽c就能去归一化得到Has。
设计流程:由于极点有规律因此有N就能查表
得到N,课本185页,3个公式得到N,N有小数向上取整
算出极点pk,得到Gap
把Gap的p利用欧米伽去归一化得到Has,没给欧米伽c,课本185页,选择一个,用通带定阻带会有富余,阻带定则通带有富裕
32.设计切比雪夫:fp,ap,fs,as:
I类通带等波纹,阻带单调减;II类反;幅度平方函数有一个伊普西龙的平方,小于1,越大波动越大,还有给CN切比雪夫多项式的平方。阶数N影响过渡带宽度波动疏密=通带最大值最小值总个数,极点特点:椭圆,b欧米伽p长半轴,a欧米伽p短半轴
求N,伊普西龙,
求Gap,再去归一化;归一化是用通带边界频率椭圆也是
模拟滤波器比较:!!!阶数相同时,巴特沃斯过渡带最宽,I,II类切比雪夫一致但是较窄,椭圆最窄,其他就是波形特点;
相位逼近:巴特沃斯和切比雪夫,3/4通带线性相位,椭圆一半,贝赛尔整个,但是贝赛尔的过渡带要宽得多;
复杂程度:相同条件,巴特沃斯阶数最高,椭圆最低
(1)高通指标转化成低通指标:归一化通带边界为1,阻带边界为高通通带边界除以高通阻带边界;降归一化低通变成高通,p=(高通)欧米伽c/s,另外的带通带阻太复杂赌他不考
33.脉冲响应不变法:将模拟滤波器得到的Has变成Hz;nmd才发现大写欧米伽是连续时间,小写w是离散,nmd和陈后金反过来你怎么不去*啊。
脉冲响应不变法是使得hn在采样点上等于ha(t),是一种时域上的逼近;因此他是拉氏逆变换出hat后进行nT采样;
优缺点:会产生混叠模拟滤波器不可能是理想带限(可加保护滤波器),不适应高通带阻,但是可以很好的还原模拟滤波器的频率响应特性
如何证明脉冲响应不变因果稳定不变,说明s域与z平面关系,另外离散的2pi周期是指-pi到pi。而离散w=连续w*T,当离散w=pi时,连续w=pi/T(折叠频率),因此以此为带限边界,T太大会导致边界过小,翻译过来就是频率不够了。
34.双线性变换法:克服混叠问题,把模拟频率压缩到折叠频率,利用tanx的x的取值对应无穷,课本213,214直接看公式,把s压缩成s1,再变成z,2个边界频率都要变
优缺点:频率响应失真,常用于片段常数滤波器
35.模拟滤波器只考虑了幅度,为了得到线性相位需要加校正网络,FIR的优点就是这个了,不过FIR的设计倒是个问题,FIR绝对稳定,有窗函数法,频率采样法,切比雪夫等波纹逼近法
35.矩形窗设计法:
将目标的理想数字滤波器通反求出时域后再z变换,由于理想不连续导致时域无限振荡,并不是因为理想有限导致时域无限,DTFT必是周期的。如果不是线性相位反求时域前先线性相位化。
用窗函数截取关于N-1/2偶对称的(线性相位)的时域,起点是0(保证因果),截取后产生的误差叫吉布斯效应(hn有限导致的,hn越多误差越小),又称截断效应,另外截断后的序列叫hd(n)
时域乘积等于频域卷积,矩形窗时域为sa函数,主瓣边界为2pi/N偶对称,N加大主瓣和旁瓣一起加高变窄,丫的,236页好多字啊跳了
36.典型窗函数:矩形窗,三角形窗,汉宁窗-升余弦窗,哈明窗(海明)-改进的升余弦窗,布莱克曼窗,凯赛-贝塞尔窗(与上面不同,这个参数可调,是一种最优窗函数)
37.频率采样法:0-2pi等间隔采样N点,得到N点的DFT,再IDFT,同样对采样点有线性相位要求要先修正一下使得采样后是249页最上面公式一样;
38.等波纹最佳逼近法:使得最大误差最小化,用这个方法会导致FIR滤波器幅频响应在通带和频带都有波纹
39.IIR:极点和零点相结合有了更多的选择性,存储单元少,计算量小,经济高效,必须使用递归结构但是有有限字长效应,IIR设计时可借用成熟的模拟滤波器计算工作量小,由于非线性导致应用范围只能在片段常数特性的选频电路中;FIR:线性相位,极点固定在原点(并非没有极点),想达到高选择性需要高阶数,贵,FIR灵活不局限于低通带通高通带阻。
40多采样率数字信号处理:
(1)整数倍抽取,采样频率降为原来的1/D,D是抽取因子,每个D-1个抽一个就好,T2=DT1但是频率降了可能会有混叠
(2)整数倍内插,两个点中插入I-1个点,这些点是未知的,理论上得还原出模拟再内插但是这样会有损伤,实际上是插入I-1个0后进行低通滤波,这个滤波器叫镜像滤波器,加上抽取的那个抗混得滤波器正好对称
41.分辨率:
42.极其重要:一类线性相位如果是奇数,是关于0,2pi(不能因为周期是2pi就说天然是偶对称的),pi偶对称;因此可以凹也可以凸,低通高通可实现(注意这里讲是2pi但是实际上低通还是高通看的-pi到pi),至于带通带阻在低通高通基础上移动就好。都行
一类偶数,0,2pi还是老样子偶对称,但是过零点处会奇对称(也就是pi),显然只能低通,带通且会有一边是正的一边是负的,而不可能是高通,带阻;
二类奇数,0,2pi,pi三点奇数对称,因此这3点均为0,只能实现带通(因为0,2pi处必须是0),高通带阻不能的原因见一类偶数
二类偶数,0,2pi奇对称,pi偶对称,因此不能低通,带阻,只能高通带通(懒得分析了背吧)