动态键值记忆网络解决知识追踪(论文复现)
本文所涉及所有资源均在传知代码平台可获取
论文概述
复现论文:Dynamic Key-Value Memory Networks for Knowledge Tracing(DKVMN)知识追踪(KT)是追踪学生在一系列学习活动中知识状态演变的任务。其目的是个性化地指导学生的学习,帮助他们高效地掌握知识概念。然而,传统方法如贝叶斯知识追踪和深度知识追踪存在一些局限性,要么为预定义的概念单独建模,要么无法准确指出学生在哪些概念上表现出色或不熟悉。为解决这些问题,引入了一种新模型称为动态键值记忆网络(DKVMN)。DKVMN能够利用概念之间的关系,直接输出学生对每个概念的掌握水平。与标准的记忆增强神经网络不同,DKVMN具有一个静态矩阵(键),存储知识概念,另一个动态矩阵(值),存储并更新对应概念的掌握水平。实验结果表明,DKVMN在各种KT数据集上持续优于现有模型。此外,DKVMN能够自动发现练习中的潜在概念,通常需要人工注释,描述学生知识状态的变化。这里来源于EduKTM的DKVMN方法,修改了出错的数据集