动态键值记忆网络解决知识追踪(论文复现)

动态键值记忆网络解决知识追踪(论文复现)

本文所涉及所有资源均在传知代码平台可获取

论文概述

复现论文:Dynamic Key-Value Memory Networks for Knowledge Tracing(DKVMN)知识追踪(KT)是追踪学生在一系列学习活动中知识状态演变的任务。其目的是个性化地指导学生的学习,帮助他们高效地掌握知识概念。然而,传统方法如贝叶斯知识追踪和深度知识追踪存在一些局限性,要么为预定义的概念单独建模,要么无法准确指出学生在哪些概念上表现出色或不熟悉。为解决这些问题,引入了一种新模型称为动态键值记忆网络(DKVMN)。DKVMN能够利用概念之间的关系,直接输出学生对每个概念的掌握水平。与标准的记忆增强神经网络不同,DKVMN具有一个静态矩阵(键),存储知识概念,另一个动态矩阵(值),存储并更新对应概念的掌握水平。实验结果表明,DKVMN在各种KT数据集上持续优于现有模型。此外,DKVMN能够自动发现练习中的潜在概念,通常需要人工注释,描述学生知识状态的变化。这里来源于EduKTM的DKVMN方法,修改了出错的数据集

论文方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wei_shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值