DETR[端到端目标检测](论文复现)

DETR[端到端目标检测](论文复现)

本文所涉及所有资源均在传知代码平台可获取

文章目录

    • DETR[端到端目标检测](论文复现)
      • 概述
      • 模型主体框架
      • 演示效果
      • 核心逻辑
      • 使用方式
      • 部署方式
      • 数据准备

概述

在目标检测需要许多手工设计的组件,例如非极大值抑制(NMS),基于人工经验生成的先验框(Anchor)等。DETR这篇文章通过将目标检测作为一个直接的集合预测问题,减少了人工设计组件的知识,简化了目标检测的流程。给定一组固定的可学习的目标查询,DETR推理目标和全局图像的上下文关系,由于DETR没有先验框的约束,因此对于较大的物体预测性能会更好

模型主体框架

在这里插入图片描述

如图所示为DETR的主体框架,由于直接采用transformer结构,模型的计算量较大,因此DETR首先采用CNN卷积神经网络进行抽取特征,此时生成的特征图一般而言降采样32倍。之后将提取的特征图送Transf

### 关于目标检测论文复现的方法与资源 #### 方法论 目标检测论文复现通常涉及多个方面的工作,包括但不限于理解论文的核心算法、搭建合适的模型框架以及准备高质量的数据集。对于实时开放词汇目标检测的研究[^1],其重点在于如何通过动态调整模型参数来适应新的类别输入,而无需重新训练整个模型。 在具体实现上,可以采用主流的目标检测框架如YOLO系列、Faster R-CNN或者DETR等作为基础架构[^2]。这些框架提供了强大的性能支持,并且拥有丰富的社区文档和技术讨论可供参考。 #### 建议使用的框架 以下是几个推荐用于目标检测研究的深度学习框架及其特点: - **TensorFlow Object Detection API**: 提供了一个易于扩展的对象识别工具包,适合初学者快速入门。 - **PyTorch Faster R-CNN / Mask R-CNN Implementations**: PyTorch版本实现了多种经典目标检测方法,灵活性高,便于修改源码满足特定需求。 - **MMDetection (Open-MMLab)**: 这是一个由阿里巴巴达摩院开源的大规模目标检测库,覆盖了大量先进技术和预训练模型,非常适合深入探索前沿技术。 #### 数据集推荐 为了验证所选模型的有效性和鲁棒性,在复现实验过程中应考虑使用标准公开数据集来进行测试和比较。下面列举了一些常用的目标检测领域内的权威数据库: - COCO(Common Objects in Context): 含有超过30万张图片标注实例,涵盖了80类常见物体标签,广泛应用于各类视觉任务评测当中。 - Pascal VOC: 主要针对行人车辆等简单场景下的对象定位问题设计而成的经典竞赛级数据集合之一。 - Open Images Dataset V6: 超大规模多标签图像分类项目成果展示平台,包含数百万幅带有人工审核过的边界框标记的照片素材。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn, FasterRCNN_ResNet50_FPN_Weights weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT model = fasterrcnn_resnet50_fpn(weights=weights) model.eval() ``` 上述代码片段展示了基于torchvision加载并初始化一个预先经过COCO数据集训练好的Fast R-CNN模型的过程示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wei_shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值