目录
01.深度学习必备基础
(1)深度学习要解决的问题
机器学习流程:①数据获取 ②特征工程⭐ ③建立模型 ④评估与应用
特征工程的作用:
数据特征决定了模型的上限。
预处理和特征提取是最核心的。
算法与参数选择决定了如果逼近这个上限。
深度学习网络可以当作一个黑盒子,它把原始数据拿到以后,会原始数据做非常复杂的各种各样的变换操作,进行特征提取,这个特征能够让计算机认识。
例如,计算机认为怎么样能认识这个3,它就把3这个数字提取出来它认识的一系列特征。
深度学习解决的核心是怎么样去提特征!
(2)计算机视觉任务
图像分类,以下图的小猫为例。
计算机眼中的图像,是被表示成三维数组的形式,每个像素的值从0到255,像素值越大该点越亮,越小该点越暗。
计算机视觉面临的挑战:1.照射角度 2.形状改变 3.部分遮蔽 4.背景混入
(3)视觉任务中遇到的问题
k = 3时,绿色圆圈是一个红色三角。
k = 5时,绿色圆圈是一个蓝色方块。
(4)损失函数的作用
假设为3分类任务,猫的图片被分为4个像素值 56/231/24/2。
3×4矩阵中的3表示3分类,4表示4个像素对应的权重值。
cat score = 0.2×56 + -0.5×231 + 0.1×24 + 2.0×2
权重矩阵的正值代表促进作用,负值代表抑制作用
矩阵一开始是随机构建的3×4矩阵,随机值在进行迭代优化!
输入Xi是不变的,权重矩阵是可以改变的
权重参数控制着整个决策边界的走势,偏置参数进行微调
神经网络既能做分类,也能做回归,唯一的区别在于整个的损失函数是怎么定义的!
网络结构是不会去变的。做不同的任务就是损失函数不同而已。
Sj是其他类别,Syi是正确类别 +的1为容忍程度
模型A 只关注局部 (100%过拟合)
模型B 关注整体(我们希望模型B)⭐
针对权重参数会不会产生变异,会不会过拟合这个问题
在构建损失函数的过程中,还要加上正则化惩罚项
正则化惩罚项一般为 λ(W1² + W2² + ... + Wn²)
λ值越大,不希望过拟合。 λ值比较小的时候,意思意思就得了,虽然有一些变异,大概削减一下就行了。 神经网络优点是能解决的问题多,缺点是过于强大了。越强大的模型,越强大的算法,过拟合风险越大。
所以现阶段在研究神经网络过程中,并不一定总是研究神经网络怎么样更强一些,而是我们希望神经网络怎么能再弱一些,别太强了。
输入一个数据,先通过得分值,再进行一个e的x次幂,让它们之间差异更明显些,相当做个映射,
映射完之后做归一化,
归一化之后求用对数函数求损失,(对数函数越接近0损失值越大,越接近1损失值越小)
log函数 0- 1之间 求出来是一个负值,因为概率是正的,所以再加一个负号。
(5)前向传播
回归任务最终是要预测一个值,回归任务是由得分值去计算一个损失
分类任务是概率值计算一个损失