【C语言】冒泡排序算法和冒泡排序的时间复杂度

本文详细介绍了冒泡排序算法的实现过程,通过标记法优化了排序效率,并提供了一段C语言实现的冒泡排序代码示例。同时,分析了冒泡排序的时间复杂度,指出其为O(N^2)。适合初学者理解和掌握。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:冒泡排序算法是非常重要的算法,一定要熟练掌握。思路可以参考一位大佬博主的博客:帅地。介绍的十分详细,理解了之后,可以参考我的代码
,是入门级别的,比较好懂。关于时间复杂度是数据结构的内容,没学过的请至我的博客:【数据结构】时间复杂度。


一、代码的实现

#include<stdio.h>
void bubble_sort(char* a, int sz)
{
	int i = 0;
	int j = 0;
	int temp = 0;
	//标记法:如果一开始或中途就已经排序完成
	//我们就要及时终止循环,不然前面都排好了,我们为什么还要在那一个个交换,岂不是浪费时间?
	//所以我们要判断什么时候排序完成,就用标记法
	//每趟都要判断是否已经排序好了
	int flag = 0;
	for (i = 0; i < sz - 1; i++)//趟数
	{
		flag = 1;
		//比较次数
		//第一趟,俩俩比较9次,找最大的泡泡都排排到最右边,既然一个大泡泡已经排序好了
		//即还剩9个泡泡还没排序,第二趟,俩俩比较8次(比较次数减一),找到剩下的9个泡泡
		//的较大泡泡排到倒数第二个位置,依次下去
		for (j = 0; j < sz - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				//学习交换两个变量时,灵活应用临时变量
				temp = a[j];
				a[j] = a[j + 1];
				a[j + 1] = temp;
				//如果进入这,就说明还没排序好
				flag = 0;
			}
		}
		if (flag == 1)
		{
			break;
		}
	}
}
int main()
{
	char arr[] = { 0,1,2,3,4,5,6,7,8,9 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int i = 0;
	bubble_sort(arr, sz);
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

二,冒泡排序的时间复杂度

假设我们只冒泡排序4个数,也就是我们需要排序3趟,第一趟比较俩俩比较3次,第二趟2次,第三趟1次,合起来一共3+2+1=6次。按照这样的算法,如果我们要冒泡排序N个数,也就是我们需要冒泡排序N-1趟,即我们一共要比较(N-1)+(N-2)+(N-3)+(N-4)+…+3+2+1=(N-1)(1+N-1)/2=N(N-1)/2。所以根据时间复杂度的算法,冒泡排序法的时间复杂度为O(N^2)。

分析排序算法时间复杂度主要关注算法在处理不同大小的输入数据时,其执行时间的增长率。在C语言中,时间复杂度通常是通过代码中的循环、递归调用基本操作的次数来分析的。下面我将通过一个简单的冒泡排序算法的C语言实现,来说明如何分析其时间复杂度冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历数列的工作是重复进行直到没有再需要交换,也就是说该数列已经排序完成。 以下是一个冒泡排序的C语言实现示例: ```c #include <stdio.h> void bubbleSort(int arr[], int n) { int i, j, temp; for(i = 0; i < n-1; i++) { for(j = 0; j < n-i-1; j++) { if(arr[j] > arr[j+1]) { // 交换两个元素的位置 temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; } } } } int main() { int arr[] = {64, 34, 25, 12, 22, 11, 90}; int n = sizeof(arr)/sizeof(arr[0]); bubbleSort(arr, n); printf("Sorted array: \n"); for (int i=0; i < n; i++) printf("%d ", arr[i]); printf("\n"); return 0; } ``` 分析上述代码的时间复杂度: 1. 内层循环在每一轮中最多执行 n-i-1 次,其中 i 是外层循环的当前迭代次数。 2. 外层循环将执行 n-1 次。 3. 因此,内层循环的总执行次数是 (n-1) + (n-2) + ... + 1 = n(n-1)/2。 冒泡排序时间复杂度分析: - 最坏情况(逆序数组):每次比较都发生交换,时间复杂度为 O(n^2)。 - 最好情况(已排序数组):只需要比较而不交换,时间复杂度为 O(n)。 - 平均情况:介于两者之间,也通常是 O(n^2)。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_麦子熟了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值