通俗机器学习知识

机器学习涉及任务(T)、经验(E)和性能(P)的核心概念,包括有监督和无监督学习两类。有监督学习如回归和分类,依赖于特征和结果信息来优化模型;无监督学习如聚类,则在无结果信息的情况下寻找数据模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自我学习《从零开始机器学习的数学原理和算法实践》大威

机器学习简单翻译过来就是:假设用P来评估计算机程序在某一任务T上的性能表现,如果程序能够利用经验E提升在任务T上的性能表现,那么就说对于任务T的性能P,这个程序对经验E进行了学习。

三个重点概念:任务(Task)、经验(experience)、性能(performance)

机器学习基于统计学习,是计算机基于数据来构建概率统计模型并运用模型对数据进行分析和预测的学科。可以通过执行某个过程改进它的性能,这就叫学习。

 

按照有无监督分类:

有监督学习:既给予“特征信息”又反馈“结果信息”

任务:学习数据中的模式,进而用于预测新数据

理解:之所以叫有监督学习是因为算法模型基于样本数据的预测结果,都有一个真实结果用来比较,从而帮助操作者改善算法模型。

典型算法包括:回归分析、逻辑回归、决策树、支持向量机、随机森林、神经网络

无监督学习:只给训练样本的“特征信息”没有结果     (常用算法“聚类”)

任务:寻找数据中蕴含的模式

理解:之所以叫无监督学习是因为我们不知道数据中蕴含的模式是什么,希望通过算法寻找

典型算法包括:K均值(K-means)聚类、主成分分析、关联规则等

按照预测值是连续还是离散分类:

分类:预测值为离散变量

回归:预测值为连续变量

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值