
卷积神经网络
文章平均质量分 87
蹦蹦跳跳真可爱589
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python----卷积神经网络(LeNet-5的手写体识别)
本段代码实现了对训练好的深度学习模型(LeNet-5)在测试集上的性能评估。首先,将模型设置为评估模式,并通过`torch.no_grad()`来禁用自动梯度计算,以节省内存和加速计算。接着,遍历测试数据集,对每个批次的图像进行前向传播,计算预测类别并与真实标签进行对比,从而统计总样本数和正确预测的数量。原创 2025-05-03 11:18:06 · 1591 阅读 · 0 评论 -
Python----卷积神经网络(MNIST数据集介绍,LeNet-5卷积神经网络的实现)
MNIST数据集(Modified National Institute of Standards and Technology database)是一个广泛使用的手写数字图像数据库,常用于机器学习和计算机视觉 的测试和训练。这个数据集包含了从0到9的手写数字的灰度图像,每张图像的大小 为28x28像素。MNIST数据集共有70000张图像,其中60000张用于训练,10000张用于测试。:包含60,000张训练图像和10,000张测试图像:28×28像素的灰度图像(单通道),像素值范围0~255。原创 2025-05-02 10:48:50 · 563 阅读 · 0 评论 -
Python----卷积神经网络(《Gradient-Based Learning Applied to Document Recognition》论文解读、LeNet-5原理)
实验结果表明,卷积神经网络(CNNs)在手写字符识别任务中优于其他传统方法。在线手写识别实验证明了图转换网络(GTN)进行全局训练的有效性,相较于独立训练模块的系统,GTN能够取得更好的识别性能。银行支票识别系统的案例展示了GTN在处理实际复杂文档识别问题上的可行性,并强调了CNNs作为其重要组成部分的价值。原创 2025-05-01 09:44:16 · 869 阅读 · 0 评论 -
Python----卷积神经网络(池化为什么能增强特征)
池化(Pooling)是卷积神经网络(CNN)中的一种关键操作,通常位于卷积层之后,用于对特征图(Feature Map)进行下采样(Downsampling)。其核心目的是通过压缩特征图的尺寸来减少计算量,同时保留最重要的特征信息,增强模型的鲁棒性和泛化能力。池化层不包含可学习的参数(如权重),而是通过固定的数学操作(如取最大值或平均值)实现特征压缩。原创 2025-04-30 09:14:01 · 794 阅读 · 0 评论 -
Python----卷积神经网络(多通道卷积与偏置过程)
多通道卷积(Multi-channel Convolution)是卷积神经网络中处理多维度输入数据(如彩色图像、多传感器数据)的核心操作。其核心思想是通过不同卷积核分别提取输入数据各通道的特征,并将结果融合,形成更高层次的特征表示。原创 2025-04-29 09:05:10 · 573 阅读 · 0 评论 -
Python----卷积神经网络(卷积为什么能识别图像)
卷积是一种数学运算,通常用于信号处理和图像分析。在卷积神经网络中,卷积操作用于提取输入数据(如图像)中的特征。通过将输入数据与卷积核(滤波器)进行卷积运算,CNN能够识别图像中的边缘、纹理和其他重要特征。原创 2025-04-28 09:45:54 · 1009 阅读 · 0 评论