
经典神经网络
文章平均质量分 85
蹦蹦跳跳真可爱589
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于PyQt5的LeNet5的手写体数字识别
本项目基于PyQt5框架开发了一个手写数字识别应用,结合LeNet-5卷积神经网络模型,实现了用户手写数字的实时识别与保存功能。系统通过MNIST数据集训练LeNet-5模型,并在PyQt5的GUI界面中提供画布供用户书写数字。用户书写后,系统将图像预处理为28x28像素的灰度图,输入LeNet-5模型进行预测,并即时显示识别结果。此外,应用还支持将用户绘制的数字图像保存至本地。项目展示了深度学习模型与图形界面的结合,提供了一个简单易用的手写数字识别工具。原创 2025-05-26 05:57:46 · 562 阅读 · 0 评论 -
Python----神经网络(基于ResNet的汽车分类)
本文介绍了一个基于PyTorch的图像分类任务实现流程。首先设置随机数种子确保实验可重复性,并检测CUDA设备可用性。接着构建数据集,定义训练和验证的图像转换流程,并创建数据加载器。然后使用ResNet18模型,冻结预训练参数并修改全连接层以适应新任务。模型训练采用交叉熵损失和Adam优化器,经过5个epoch训练后,在验证集上评估准确率并绘制混淆矩阵。整个流程包括数据预处理、模型构建、训练验证和结果可视化等完整步骤。原创 2025-05-25 09:59:08 · 511 阅读 · 0 评论 -
Python----神经网络(《Searching for MobileNetV3》论文概括和MobileNetV3网络)
MobileNetV3提出了large和small两个版本(区别在于网络结构不同),paper中讲 在MobileNetV3 Large在ImageNet分类任务上,较MobileNetV2,TOP1准确率提高 了大约3.2%,时间减少了20%。与具有同等延迟的MobileNetV2模型相比,Mobile NetV3 Small的准确率高6.6%。原创 2025-05-14 09:01:49 · 1435 阅读 · 0 评论 -
Python----神经网络(《Inverted Residuals and Linear Bottlenecks》论文概括和MobileNetV2网络)
在移动端设备float16的低精度的时 候,也能有很好的数值分辨率,如果对Relu的激活范围不加限制,输出范围为0到正 无穷,如果激活值非常大,分布在一个很大的范围内,则低精度的float16无法很好 地精确描述如此大范围的数值,带来精度损失,所以在量化过程中,Relu6能够有更 好的量化表现和更小的精度下降。即对输入特征矩阵进行利用1x1卷积进行降维,减少输入特征矩阵的channel,然后 通过3x3的卷积核进行处理提取特征,最后通过1x1的卷积核进行升维,那么它的结 构就是两边深,中间浅的结构。原创 2025-05-13 09:04:20 · 1122 阅读 · 0 评论 -
Python----神经网络(《Efficient Convolutional Neural Networks for Mobile VisionApplication》和MobileNetV1网络)
MobileNets模型基于深度可分离卷积构建,这是一种将标准卷积分解为深度卷积和1x1卷积(称为逐点卷积)的卷积分解形式。 深度卷积将单个滤波器应用于每个输入通道,而逐点卷积则用于组合深度卷积的输出。 这种分解大大减少了计算量和模型大小。原创 2025-05-12 08:55:02 · 925 阅读 · 0 评论 -
Python----神经网络(基于Alex Net的花卉分类项目)
在当今快速发展的科技领域,计算机视觉已成为一个备受关注的研究方向。随着深度学习技术的不断进步,图像识别技术得到了显著提升,广泛应用于医疗、安防、自动驾驶等多个领域。其中,花卉分类作为计算机视觉中的一个重要应用,不仅能帮助园艺师和农业生产者优化作物管理,还能在生态研究、植物保护等方面发挥重要作用。传统的花卉分类方法依赖于人工特征提取和机器学习算法,虽然在特定条件下能够取得较好效果,但在面对复杂的自然环境和大量不同花卉品种时,仍显得力不从心。原创 2025-05-11 12:14:36 · 690 阅读 · 0 评论 -
Python----神经网络(《Deep Residual Learning for Image Recognition》论文和ResNet网络结构)
ResNet(“残差网络”的简称)是一种深度神经网络,由Microsoft研究团队于2015年提出。它在当时的ImageNet 比赛获得了图像分类第一名,目标检测第一名,在COCO数据集目标检测第一名,图像分割第一名。ResNet的主要特点是采用了残差学习机制。在传统的神经网络中,每一层的输出都是直接通过一个非线性激活函 数得到的。但在ResNet中,每一层的输出是通过一个“残差块”得到的,该残差块包含了一个快捷连接 (shortcut)和几个卷积层。原创 2025-05-10 13:44:27 · 1847 阅读 · 0 评论 -
Python----神经网络(基于AlexNet的猫狗分类项目)
AlexNet的成功不仅证明了深度学习在计算机视觉领域的潜力,还推动了后续更多深度学习模型的研究和应用。猫和狗是我们生活中最常见的宠物,它们的图像数据大量存在于互联网上。例如,训练良好的模型可以支持流浪动物的识别和归类、动物行为监测、虚拟宠物应用等方面。通过本项目,我们希望展现深度学习在实际应用中的有效性,以及其对社会的正面影响。在本项目中,我们的目标是构建一个深度学习模型,能够有效地识别和分类猫和狗的图像。通过使用卷积神经网络(CNN),尤其是著名的AlexNet架构,我们希望实现高精度的图像分类。原创 2025-05-08 10:02:00 · 723 阅读 · 0 评论 -
Python----神经网络(《Going deeper with convolutions》论文解读和GoogLeNet网络)
GoogLeNet是一种流行的神经网络架构,它通常用于图像分类任务。该网络架构是 在2014年ImageNet挑战赛中由Google团队首次提出的,并且在那次分类比赛中获得 了第一名的成绩。GoogLeNet的主要特点是采用了一种名为“Inception”模块的结构,该模块可以有效 地捕捉图像中的多尺度特征。在Inception模块中,网络结构被分成多个并行的分支,每个分支都用于捕捉不同尺 度的特征。这样,GoogLeNet网络就可以更有效地学习图像的特征,并且还可以减 少网络的体积。原创 2025-05-07 09:01:02 · 1065 阅读 · 0 评论 -
Python----神经网络(《Very Deep Convolutional Networks for Large-Scale Image Recognition》论文解析和VggNet网络结构)
主要研究了卷积神经网络(ConvNet)的深度对其在大规模图像识别任务中准确率的影响。他们的主要贡献在于,通过使用非常小的 (3x3) 卷积滤波器构建不同深度的网络,并对其进行详尽的评估,结果表明,将网络深度增加到 16-19 层可以显著提高性能。基于这些发现,他们的团队在 2014 年的 ImageNet 挑战赛中,分别在定位和分类任务中获得了第一和第二名。此外,论文还展示了这些网络学到的图像特征具有很好的泛化能力,在其他数据集上也能达到当前最优的结果。原创 2025-05-06 08:47:10 · 1336 阅读 · 0 评论 -
Python----经典神经网络(《ImageNet Classification with Deep Convolutional Neural Networks》论文和AlexNet网络构建)
《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文介绍了一种大型深度卷积神经网络,用于将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分为1000个不同的类别 [cite: 1, 2, 3]。该网络在测试数据上取得了显著优于现有技术水平的结果,top-1和top-5的错误率分别为37.5%和17.0% [cite: 2]。原创 2025-05-05 13:22:02 · 1585 阅读 · 0 评论