
Fastapi
文章平均质量分 79
AI小任
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python----FastAPI(表单数据、异步处理、文件上传、请求对象Request)
本文介绍了FastAPI中表单处理、异步编程和文件上传的实现方法。表单处理部分展示了三种方式:直接使用Form()声明字段、结合Pydantic模型和Annotated注解、以及在模型字段中直接使用Form()。异步编程部分对比了async/await和非异步函数的性能差异,演示了异步处理并发I/O操作的优势。文件上传部分涵盖了小文件和大文件的不同处理方式,包括内存存储、磁盘存储、多文件上传和文件验证,推荐使用分块读取和异步写入的方式处理大文件以避免内存溢出。最后还介绍了如何通过Request对象获取完整的原创 2025-07-27 10:02:52 · 928 阅读 · 0 评论 -
Python----FastAPI(请求体、请求参数验证_(Query方式、Path方式、Field方式))
FastAPI提供多种数据验证方式确保API安全性和可靠性。通过Pydantic模型可对请求体进行类型检查和字段验证,支持默认值、必填项等设置。Query方式用于URL查询参数验证,支持长度、范围、别名等规则。Path方式验证路径参数,支持数值范围、正则表达式等条件。Field方式为模型字段添加更详细的验证规则和元数据,支持自定义验证器、枚举类型等。这些验证机制能自动生成文档并返回详细错误信息,结合Uvicorn服务器实现高效开发。验证内容涵盖字符串长度、数值范围、正则匹配等,确保API输入数据的完整性和安原创 2025-07-23 08:52:19 · 487 阅读 · 0 评论 -
Python----大模型(基于Fastapi+streamlit的机器人对话)
本文介绍了基于FastAPI和Streamlit构建通义千问大模型对话系统的实现方案。首先从魔搭社区下载Qwen2.5-7B-Instruct模型,使用vLLM启动本地服务。然后通过FastAPI构建高性能后端API,支持流式响应和参数调节(温度、top_p等)。最后利用Streamlit开发交互式前端界面,包含历史记录管理、参数控制和实时对话展示功能。系统采用异步通信架构,实现了模型推理、API服务和用户界面的高效协同,为LLM应用提供了完整的开发范例。原创 2025-07-22 08:59:32 · 519 阅读 · 0 评论 -
Python----FastAPI(FastAPI的介绍、路径参数、查询参数)
FastAPI是高性能Python Web框架,基于Starlette和Pydantic,支持异步编程和类型提示。其核心优势包括:接近Node.js/Go的性能(~3000请求/秒)、自动API文档生成、强类型数据验证以及完善的异步支持。相比Flask/Django等同步框架,FastAPI更适合现代高并发场景。基础使用需安装fastapi和uvicorn,通过@app.get定义路由,支持路径参数和查询参数。虽然AI可生成代码,但缺乏业务逻辑适配和运维能力,开发者仍需掌握架构设计、调试和安全优化等核心技能原创 2025-07-21 08:43:11 · 926 阅读 · 0 评论