Spark 的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客
Spark 的Standalone集群环境安装与测试-CSDN博客
Spark 程序开发与提交:本地与集群模式全解析-CSDN博客
Spark on YARN:Spark集群模式之Yarn模式的原理、搭建与实践-CSDN博客
Spark 中 RDD 的诞生:原理、操作与分区规则-CSDN博客
Spark 中的 RDD 分区的设定规则与高阶函数、Lambda 表达式详解-CSDN博客
PySpark 数据处理实战:从基础操作到案例分析-CSDN博客
Spark 的容错机制:保障数据处理的稳定性与高效性-CSDN博客
目录
(四)Stage转换的TaskSet中Task个数由什么决定?
(五)降低分区可以不经过shuffle就实现,为什么有时候建议走Shuffle来降低分区?
(六) 在 spark 中什么模式下能访问 4040 界面?什么情况下能访问 8080 界面?
宽依赖(Wide/Shuffle Dependencies)
Spark 作为大数据处理领域的重要框架,其复杂的架构和运行机制常常让初学者望而却步。本文将深入剖析 Spark 中的关键概念,包括 ClusterManager、Worker、Application、Driver、Executor、Job、Stage、Task 等,并详细讲解 Spark 应用的提交流程,以及宽窄依赖这一重要特性,旨在帮助读者全面理解 Spark 的工作原理,为进一步深入学习和应用 Spark 打下坚实基础。
一、Spark 核心概念解析
ClusterManager、Worker、Application、Driver、 Executor、Job、Stage、Task分别是什么