Spark 核心概念与宽窄依赖的详细解析

 Spark 的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客

Spark 的Standalone集群环境安装与测试-CSDN博客

PySpark 本地开发环境搭建与实践-CSDN博客

Spark 程序开发与提交:本地与集群模式全解析-CSDN博客

Spark on YARN:Spark集群模式之Yarn模式的原理、搭建与实践-CSDN博客

Spark 中 RDD 的诞生:原理、操作与分区规则-CSDN博客

Spark 中的 RDD 分区的设定规则与高阶函数、Lambda 表达式详解-CSDN博客

RDD 算子全面解析:从基础到进阶与面试要点-CSDN博客

PySpark 数据处理实战:从基础操作到案例分析-CSDN博客

Spark 的容错机制:保障数据处理的稳定性与高效性-CSDN博客

Spark 共享变量:广播变量与累加器全解析-CSDN博客

目录

一、Spark 核心概念解析

(一)架构层面概念

ClusterManager(统称)

Worker(统称)

(二)程序层面概念

Application

Driver

Executor

(三)运行层面概念

Job

Stage

Task

(四)Stage转换的TaskSet中Task个数由什么决定?

(五)降低分区可以不经过shuffle就实现,为什么有时候建议走Shuffle来降低分区?

(六) 在 spark 中什么模式下能访问 4040 界面?什么情况下能访问 8080 界面?

二、Spark 应用提交流程

(一)前提准备

(二)提交步骤

三、Spark 中的宽窄依赖

(一)依赖关系概述

(二)宽窄依赖定义与特点

窄依赖(Narrow Dependencies)

宽依赖(Wide/Shuffle Dependencies)

(三)标记宽窄依赖的意义

提高数据容错性能

提高数据转换性能

四、总结


        Spark 作为大数据处理领域的重要框架,其复杂的架构和运行机制常常让初学者望而却步。本文将深入剖析 Spark 中的关键概念,包括 ClusterManager、Worker、Application、Driver、Executor、Job、Stage、Task 等,并详细讲解 Spark 应用的提交流程,以及宽窄依赖这一重要特性,旨在帮助读者全面理解 Spark 的工作原理,为进一步深入学习和应用 Spark 打下坚实基础。

一、Spark 核心概念解析

ClusterManager、Worker、Application、Driver、 Executor、Job、Stage、Task分别是什么

(一)架构层面概念

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天冬忘忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值