最大公因数和最小公倍数之间的性质:
两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。
#include<stdio.h>
int main()
{
int a,b,t,m,n;
printf("请输入两个数:");
scanf("%d%d",&a,&b);
if(a<b)
{
t=a;
a=b;
b=t;
}
m=a;
n=b;
while(t!=0)
{
t=a%b;
a=b;
b=t;
}
printf("最大公因数是%d,最小公倍数是%d",a,(m*n)/a);
return 0;
}
(c语言,方法一)
辗转相除法。利用大数除小数取余,然后将大数值给小数,小数赋余数值,直到大数除小数所得余数值为零。
#include<stdio.h>
int main()
{
int a,b,m,n;
printf("请输入两个整数:");
scanf("%d%d", &a, &b);
m=a;
n=b;
while (a != b)
{
if (a > b)
a = a - b;
else
b = b - a;
}
printf("最大公因数是%d最小公倍数是%d\n", b,(m*n)/b);
return 0;
}
(c语言,方法二)
较大的数减较小的数,所得差与较小数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。这个等数即为两个数的最大公因数。最小公倍数是原始两数乘积除以最大公因数。
#include<iostream>
using namespace std;
int main()
{
int a,b,t,m,n;
cout<<"请输入两个数:";
cin>>a>>b;
if(a<b)
{
t=a;
a=b;
b=t;
}
m=a;
n=b;
while(t!=0)
{
t=a%b;
a=b;
b=t;
}
cout<<"最大公因数是"<<a<<"最小公倍数是"<<(m*n)/a<<endl;
return 0;
}
(c++,方法一)
#include<iostream>
using namespace std;
int main()
{
int a,b,m,n;
cout<<"请输入两个整数:";
cin>>a>>b;
m=a;
n=b;
while (a != b)
{
if (a > b)
a = a - b;
else
b = b - a;
}
cout<<"最大公因数是"<<b<<"最小公倍数是"<<(m*n)/b<<endl;
return 0;
}