- 博客(4)
- 收藏
- 关注
原创 循环神经网络(RNN)与自然语言处理(NLP)全面解析
与传统的图像分类(一对一模型)不同,序列模型需要考虑时间维度上的依赖关系。- 示例:{'<unk>':0, 'the':1, 'i':2, 'and':3, ...}a. 读取数据:加载原始文本(如IMDB影评数据集)- 多类别特征:独热编码(如国籍197维向量)解决方案:学习低维稠密向量表示(如32/64维)独热编码问题:维度灾难(词汇表大时维度过高)- 长期依赖遗忘:梯度随时间步指数衰减/爆炸。- 解决方案:门控机制(GRU/LSTM)- 二值特征:0/1编码(如性别)- 改进结构:测试精度85.4%
2025-05-25 23:19:53
815
原创 深度学习视觉应用核心知识点总结:从数据集到评价指标与经典模型
数据集选择:根据任务复杂度和目标类型选择合适的数据集。简单分类任务可优先使用 MNIST、Fashion-MNIST;复杂场景下的目标检测与分割,MS COCO 和 PASCAL VOC 是更优选择;大规模预训练则可考虑 ImageNet。指标应用:在模型调优时,需综合考虑精确率和召回率的平衡,通过 P-R 曲线和 AP 值全面评估模型性能。例如,医疗检测场景更注重召回率(减少漏诊),而推荐系统更关注精确率(提高推荐质量)。模型落地:目标检测领域,YOLO 系列因其速度与精度的平衡,适合实时应用;
2025-05-20 23:01:46
1587
原创 卷积神经网络基础:从理论到实践的全面总结
其基本概念包括张量(Tensor)、计算图等,使用tensor表示数据,Dataset和DataLoader读取样本数据和标签,变量(Variable)存储神经网络权值等参数。C3层进一步提取特征等。在不同层间(如卷积层与下采样层、卷积层与全连接层等),BP算法有不同的计算方式来实现误差回传和参数更新。它有8层可学习层(5层卷积层和3层全连接层),采用最大池化和ReLU激活函数,网络规模大,参数数量接近6000万。结构规整,卷积层大多使用3×3过滤器,随网络深入,高和宽衰减,通道数增多。
2025-05-13 23:13:30
337
原创 神经网络语深度学习性能优化技巧
本文将总结常用的优化技巧,包括模型初始化、数据划分、正则化方法以及优化算法等,帮助读者提升模型训练效率和性能。K折交叉验证:将原始训练数据分为K个子集,每次用K-1个子集训练,剩余1个子集验证,最终取K次结果的平均值。过拟合:模型在训练集上误差小,但在测试集上误差大,通常由于模型复杂度过高或训练数据不足导致。Dropout:在训练过程中随机将部分神经元置零,减少神经元间的依赖性,增强模型的泛化能力。动量法通过引入速度变量,模拟物理中的动量效应,减少训练过程中的震荡,加速收敛。希望本文对大家有所帮助!
2025-05-05 20:08:13
688
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人