机器人中的数值优化之基本概念

文章介绍了数值优化在机器人技术中的重要性,包括推荐的最优化书籍、优化问题的基本范式,如目标函数的下界和下水平集的有界性,并提及数值优化在SLAM、轨迹规划等实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文ppt来自深蓝学院《机器人中的数值优化》

目录

1 推荐书单

2 优化问题的基本范式

3 数值优化在机器人领域的应用


1 推荐书单

对于英语阅读有困难的同学可以看第一本书,对于最优化的介绍也是比较详细的。

这是第一本书的ppt链接最优化:建模、算法与理论/最优化计算方法 (pku.edu.cn)

2 优化问题的基本范式

优化问题有一个基本的范式,如下

默认的假设:
1. The objective function is lower bounded.
目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须有界,也就是上述的 lower bounded
2. The objective function has bounded sub-level sets.

 

sub-level sets就是下水平集,此时要求目标函数不能存在当x趋于无穷时函数趋于某个值即下水平集无界,这同样会导致最小值无法用浮点数表示

这是默认的假设都是理想的数值优化方法在计算机实际运算中需要注意的问题

3 数值优化在机器人领域的应用

在slam、轨迹规划、点云配准、TOPP问题上都有数值优化的应用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意2121

创作不易,多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值