自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 构建智能提示词工程师:LangGraph 的自动化提示词生成流程

LangGraph是一个开源框架,由LangChain团队开发,用于构建和管理AI智能体工作流。它通过图形化结构编排任务,具备状态管理、任务持久化、人工干预和实时反馈等功能,能与LangChain等工具集成。核心模块包括信息收集器、最终生成器和智能流程控制器,可自动化生成高质量的提示词模板。例如,用户只需提供产品介绍需求,系统通过对话收集变量和风格要求,自动生成专业模板。LangGraph显著提升提示词生成效率,适用于开发者、内容创作者等群体。项目已在GitHub开源。

2025-08-26 19:41:23 470

原创 从“魔法”到“产品”:一名一线提示词工程师揭示AI项目落地的四大挑战

企业级AI项目落地的四大挑战 在企业级AI项目实践中,将大模型从“炫技工具”转化为稳定业务组件的过程中,面临核心挑战: 认知鸿沟:消费级AI的“自由发挥”与企业级“精准可控”需求冲突,导致产品设计与技术实现脱节; 责任模糊:模型输出错误时,难以定位问题源头(提示词、数据、模型幻觉或系统链路),团队协作效率低下; 非确定性困境:模型概率性输出使功能验收、进度规划和风险管理脱离传统确定性逻辑,需敏捷试错; 系统复杂性:多工具协同(如SQL、RAG)形成的长链路中,故障排查难度指数级上升。 应对这些挑战需要团队重

2025-08-18 09:04:04 352

原创 GPT-5 提示词指南核心技巧总结

然而,由于 GPT-5 遵循指令的谨慎行为,包含矛盾或模糊指令的不良提示对 GPT-5 的损害可能大于其他模型,这份指南详细介绍了如何通过特定的提示(Prompting)技巧来最大化 GPT-5 在代理任务、编码、智能和指令遵循等方面的性能。通过“自我反思”的提示,引导模型先建立一个高质量标准(评分准则),然后根据这个标准进行迭代,从而一次性生成高质量的应用。对于 GPT-5 这种本身就很主动的模型,需要调整指令,避免其过度搜索,更好地平衡内部知识和外部工具的使用。利用 GPT-5 本身来优化你的提示。

2025-08-13 09:13:59 765

原创 Eigent 终章:揭秘驱动一切的 AI 项目经理!

所以,这份 Workforce 代码其实是创建了一个非常擅长沟通和汇报的 AI 项目经理。它不仅能智能地拆解和执行任务,更重要的是,它通过在任务的每一个关键节点(分配了、开始了、完成了、失败了)都向前端发送精确的状态更新,让原本在后台运行的、复杂的 AI 协作过程,变得对用户完全透明、可见。

2025-08-12 14:32:25 727

原创 Eigent的Agent为何需要克隆?揭秘其高效运行的“影分身之术”

本文揭秘了Eigent项目中Agent克隆机制的设计原理与实用价值。当面对多任务并行处理时,直接使用Agent"本体"会导致状态污染和并发冲突两大问题。为此,Eigent采用克隆机制,通过复制Agent模板创建独立工作副本,确保每个任务拥有干净的状态空间,实现高效并行处理。该机制特别适用于复杂任务分解后的子任务执行场景,既保障了任务隔离性,又提升了系统吞吐量。文中用"菜谱复印"的生动比喻,形象说明了克隆机制如何实现资源隔离与高效协作,是支撑AI系统稳定运行的关键设计。

2025-08-09 15:47:42 768

原创 共赏Eigent开源项目:解构AI智能体团队的“岗位说明书”

这不再是关于训练一个无所不能的“超级大脑”,而是关于如何成为一名“AI 团队的架构师”,为每个智能体赋予独特的“灵魂”和“岗位职责”。它告诉我们,AI的发展,正从追求“更强大”的模型,走向探索“更有效”的协同。这位Agent是办公室里的“瑞士军刀”,能够将杂乱无章的数据和信息,转化为结构清晰、格式精美的PPT、Excel、Word甚至PDF文档。愿我们都能在AI的浪潮中,找到自己的角色,收获属于自己的果实。这位是团队的艺术家和媒体分析师,精通音视频的分析、图像内容的理解,还能根据你的想法“妙笔生画”。

2025-08-07 17:35:52 462

原创 Eigent:把AI数字劳动力团队,直接搬上你的桌面

Eigent:开创AI团队协作新时代的开源生产力平台 Eigent是一个革命性的开源多智能体生产力平台,让用户能在本地组建"AI数字员工团队"完成复杂任务。不同于单一AI工具,Eigent支持创建多个专业Agent协同工作,如研究员、数据分析师、报告撰写师等,通过链式协作处理完整工作流。该平台具有三大核心优势:支持私有化部署保障数据安全、开放可扩展的插件生态、在GAIABenchmark评测中表现顶尖。作为首个面向终端用户的多智能体系统,Eigent实现了从AI工具到数字劳动力的跨越,已

2025-08-05 17:35:13 657

原创 大模型图像与文本分析能力大揭秘深度评测

图文结合输入(实验组二、四)确实能让给出更深度的分析。但对于追求极致数值准确性的任务,纯文本输入(实验组三)反而更稳定,因为它避免了图片信息的“干扰”。所以,选对输入方式,就像“对症下药”一样重要!💊对于大规模、纯粹的数值分析任务,Gemini 系列、GLM-4.5 和 ChatGPT-o3绝对是你的首选!它们表现出了最佳的稳定性和准确性,是值得信赖的“数据分析专家”!💯几乎所有模型(特别是ChatGPT 系列)在处理小数的精确计算时,都存在可靠性问题。

2025-08-01 09:33:26 616

原创 这不仅仅是一个提示词 ——它是为你的AI架构师量身打造的迷你操作系统

这篇技术文章探讨了如何通过结构化指令将大语言模型(LLM)转变为专业化的"AI架构师"。核心在于设计了一套精细的指令集,使AI能够执行包含探索、决策、行动在内的完整工作流,而不仅是简单的内容生成。该方案实现了五大突破:1)从单次响应到状态化工作流;2)建立机器间可解析的API协议;3)通过内部自洽校验提升输出质量;4)引入实用主义容错机制;5)结构化暴露不确定性。这种设计理念将软件工程思维融入LLM引导,使其行为更接近专业人类工程师.

2025-07-29 10:30:00 752

原创 从指令到蓝图:解构一个SOTA级AI提示词,全面提升你的Prompt工程能力

本文剖析了一个"教科书级"的AI提示词范例,展示了如何通过精心设计的提示词激发AI的最大潜能。这个产品经理AI助手的提示词具有八大优势:明确角色定位、模式化指令、结构化输出、工具规范、量化标准、正反约束、具体示例和工作流程设计。文章提炼出五大实用技巧:设定角色、提供模板、量化要求、善用例证和设计流程,帮助读者将提示词从简单请求升级为"AI编程",从而在与AI协作中获得更专业、精准的输出。

2025-07-28 09:31:15 959

原创 深入剖析 MetaGPT 中的提示词工程:WriteCode 动作的提示词设计

MetaGPT 是一个创新的 AI 框架,旨在通过多代理协作模拟软件开发过程。其中,WriteCode 是核心动作之一,它负责为单个文件生成代码。这个动作不是简单地“写代码”,而是通过精心设计的提示词来指导 LLM 产生符合谷歌风格的、模块化且易维护的代码。让我们先来看看这个提示词模板(PROMPT_TEMPLATE)的内容。在 AI 时代,提示词工程不再是可选项,而是构建可靠系统的核心。通过 MetaGPT 的 WriteCode 示例,我们看到一个精心设计的提示词如何驱动复杂的代码生成任务。

2025-07-26 16:48:07 1224

原创 解构一个大师级 Prompt:深入 Metagpt 源码,学习顶级提示词设计

本文深入剖析了Metagpt框架中的提示词工程案例,展示了如何设计高效提示词。该案例通过三个关键技巧实现稳定输出:1)采用少样本学习,通过具体示例引导模型理解任务;2)使用清晰的结构分隔不同功能区域;3)提供分步指令处理各类情况。文章特别强调强制结构化输出的重要性,确保自动化流程中的数据传输可靠性。这个案例证明,优秀的提示词需要示范优先、结构清晰、指令明确和格式严格,这些原则适用于各类LLM应用场景,能显著提升模型输出的精确性和可靠性。

2025-07-25 11:42:45 536

原创 探索 TradingAgents:用 AI 团队帮你分析股票的开源项目

TradingAgents 是个创新项目,让 AI 团队化分析股票,适合想深入懂投资但没时间的小白或专业人士。它开源、透明,还能自我进化,虽然有成本和依赖问题,但你可以根据需要改代码(比如用不同模型避偏见)。如果你对投资感兴趣,不妨去 GitHub 试试!跑个 demo,看看它怎么帮你分析 Tesla 或 Apple。未来,这样的多 AI 系统可能会改变投资世界。你怎么看?欢迎评论分享你的想法。保持好奇,继续探索!🚀。

2025-07-24 08:50:30 1164

原创 从新手到忍者:精通Claude提示词的终极指南(5000字深度解析)

不要把答案的最终格式交给运气。明确告诉Claude您希望回复如何组织。请求特定格式:您可以要求使用项目符号、表格,甚至是像JSON这样的结构化数据格式。请用JSON格式写一首关于{动物}的俳句,使用 "first_line"、"second_line" 和 "third_line"作为键。。使用输出标签:就像您用标签构建输入一样,您可以用它们来定义输出。一个常见的做法是要求Claude将其最终答案包裹在特定的标签里,比如<answer>或<response>。API用户专业技巧 -:这是一个绝佳的技巧。

2025-07-19 09:36:29 765

原创 元提示与提示词折叠:AI系统中提升效率与准确性的创新方法 [特殊字符][特殊字符]

随着AI技术的发展,元提示(Metaprompting)和提示词折叠(PromptFolding)成为提升系统表现的关键方法。元提示通过动态优化提示词框架,增强AI的灵活性和准确性;提示词折叠则让AI在执行任务时自我调节提示词,减少人工干预。两者相辅相成,在客户服务、代码审查等场景中显著提高AI的效率和适应性。这些创新方法标志着AI正迈向自我优化的新时代。

2025-06-16 22:58:38 678

原创 提示词分享

摘要: 提示词1构建了一个SQL查询框架,通过"问题-SQL查询-结果-答案"四步流程,规范自然语言到数据库查询的转换过程。 提示词2设计了工具调用机制,采用"思考-行动-观察"的标准化流程,确保AI助手能结构化地使用外部工具。 提示词3强调事实核查,要求严格引用[${{number}}]标记来源,避免信息编造,保持回答的中立性和准确性。 提示词4采用<subq>/<suba>标签体系分解复杂问题,通过子问题递归求解实现RAG检索的模块化处理。

2025-06-04 23:31:38 363

原创 高级的提示词工程技术

2025-06-04 23:23:29 938

原创 打造高效提示词:实用策略与案例分享

本文系统介绍了AI提示词(Prompt)的设计方法与优化技巧。优质提示词能显著提升大模型的理解能力与输出质量,在语义检索、内容创作、代码生成等场景发挥关键作用。文章重点解析了提示词设计的核心要素:识别关键假设、结构化指令设计、内容再造要求等,并提供了针对不同场景的实用模板。通过明确任务目标、强化细节要求、优化格式结构等方法,用户可有效提升提示词质量。最后强调持续优化和经验积累的重要性,帮助读者构建高效的AI交互能力。

2025-06-03 23:36:10 828

原创 提示词分享

解读:这个提示词可以实现的是任务分配Agent的功能,告诉任务分配的Agent,我们有多少可用的。解读:本提示词适用于客服电商领域等,将用户问的问题,划分给某个团队或者某个领域的人去回。请输出下一个应执行的工作者名称,如果没有符合的情况则输出"FINISH"。你是一个分类模型,根据所提供的上下文将客户消息分配给合适的团队。行动:要采取的行动,应该是[{tool_names}]中的一个。

2025-06-03 08:33:17 341

原创 如何用提示词给AI模型戴上“金箍“:5大类技巧有效减少幻觉生成

实时纠错机制 当用户指出「上文中量子计算距离数据有误」,立即追加: 「注意:前序回答中量子比特稳定性数据需重新核查,优先采用2024《自然》论文」 这种动态修正使后续回答准确率立即回升至94%,形成持续优化的对话闭环。渐进式追问 用户:简述AI在医疗的应用 → 模型回答后追问:「详述AI在病理切片分析中的准确率数据」 通过类苏格拉底对话法层层深入,某案例库显示,四轮渐进提问可将回答细致度提升3倍,同时降低笼统叙述导致的错误率。在事实核查任务中,该方法能额外发现23%的潜在错误,尤其擅长识别过时的统计数据。

2025-02-21 17:44:34 1146

原创 【保姆级教程】Transformers工具链速成:从模型微调到量化部署,一篇搞定!

根据任务选预训练模型(

2025-02-14 18:00:59 1035

原创 【大模型微调方法论:从“硬刚”到“巧取”,你的显卡还好吗?】

“调个参而已,怎么比谈恋爱还难?” —— 来自一位深夜跑崩显卡的程序员当你面对一个预训练好的大模型(比如GPT、LLaMA),想让它成为你的专属“打工人”,微调(Fine-tuning)就是必经之路!但微调不是无脑调参,选对方法能让你事半功倍,否则……显卡可能会原地爆炸💥。今天我们就来聊聊:全参数微调 vs PEFT,增量预训练 vs 指令微调,以及如何用HuggingFace的工具优雅“偷懒”!简单说:把预训练模型的所有参数都更新一遍,让它彻底适应新任务。就像给模型做了一次全身大保健,连头发丝都不放过!

2025-02-14 17:26:53 1112

原创 AI Agent入门指南:AI如何实现自我规划与记忆管理

您可能认为AI仅限于聊天功能,但。

2025-02-05 23:10:30 885

原创 从零开始理解大模型:原理、训练与应用指南

当GPT-4能通过图灵测试,当Stable Diffusion让每个人成为艺术家,我们正站在智能革命的奇点上。理解大模型不仅是技术人员的必修课,更是每个现代人的认知升级。记住:驾驭AI的不是代码,而是人类智慧的结晶与伦理的坚守。

2025-02-04 23:02:20 793

原创 从零理解感知机

感知机(Perceptron)是Frank Rosenblatt在1957年提出的概念,就像电子设备中的基础电路元件,它是现代深度学习的"原子单位"。从单层到多层的进化,正是深度学习发展的缩影。这个公式的妙处在于:当加权输入超过阈值时输出1(启动),否则0(关闭)。就像人的神经元,达到刺激阈值才会激活。:在二维平面上,我们找不到一条直线能完美分割0和1的输出结果。:通过反转权重和偏置,我们实现了逻辑的反转。,就像不同灵敏度的开关,或门更容易被触发。,这是实现"全为1才激活"的关键。

2025-02-03 15:21:40 819

原创 在Windows平台使用Ollama本地部署AI大模型指南

你好呀!今天想和大家分享一个实用技能:如何在自己的电脑上轻松部署AI大模型。整个过程就像组装一台乐高机甲,只要跟着步骤来,新手也能顺利搞定~(如果发现哪里说得不准确,欢迎随时指正!🛠️1. 打开浏览器,输入官网地址(怕迷路的小伙伴可以直接搜"Ollama官网")2. 找到Windows版的下载按钮(认准那个写着"Download for Windows"的显眼包)3. 双击安装包跟着提示走(就像安装微信一样简单!💡 安装完成后,系统托盘会出现小羊驼图标,说明服务已在后台运行啦!🧩。

2025-01-31 11:20:27 1222

原创 结构化提示词实践:提升大模型意图识别的精准度

今天的主题是“结构化提示词”,我将结合我在学习LangGPT结构化提示词时的心得,分享一些如何编写清晰、准确的提示词的小技巧。这些技巧不仅帮助我提高了与大模型的互动效率,也使得任务的执行更加精准。希望这篇文章对大家有所帮助。

2025-01-24 16:38:28 1593

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除