724. 寻找数组的中心下标
给你一个整数数组
nums
,请计算数组的 中心下标 。数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为
0
,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回
-1
。示例 1:
输入:nums = [1, 7, 3, 6, 5, 6] 输出:3 解释: 中心下标是 3 。 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 , 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。示例 2:
输入:nums = [1, 2, 3] 输出:-1 解释: 数组中不存在满足此条件的中心下标。示例 3:
输入:nums = [2, 1, -1] 输出:0 解释: 中心下标是 0 。 左侧数之和 sum = 0 ,(下标 0 左侧不存在元素), 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。
唯一需要注意的就是bp数组初始化时,对于0下标元素的更新,注意同一个下标在俩个数组中访问的位置情况
将bp数组初始化为n+1个元素更容易对bp数组进行更新,已经更容易后续的结果判断
class Solution {
public:
int pivotIndex(vector<int>& nums) {
int n = nums.size();
// 初始化bp前缀和数组
vector<int> bp(n+1, 0);
for(int i = 1; i <= n; i++)
bp[i] = nums[i-1] + bp[i-1]; // 此处注意bp数组下标访问
// 使用前缀和数组
for(int i = 1; i <= n; i++)
{
if(bp[i-1] == (bp[n] - bp[i]))
return i-1;
}
return -1;
}
};