【目标识别】检测具有相同背景的不同图像并找到图像中的红色圆圈目标(Matlab代码实现)

本文提出了一种SAR图像目标识别方法,通过数据融合增强样本特征,利用卷积神经网络和注意力机制提高识别性能。实验在MSTAR数据集上显示了优秀的结果,证明了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

目前卷积神经网络已经在SAR目标识别领域得到了广泛应用,然而,由于SAR图像的目标样本数量过少,以及图像相干斑噪声的存在,使得网络不能充分的学习样本深层特征,对网络的识别性能会造成一定的影响。针对上述问题,提出一种基于数据融合的目标识别方法,算法首先对原始图像分别进行噪声抑制和边缘信息提取处理,然后将处理后的两类特征信息进行数据融合,将单通道灰度图像融合扩充至双通道图像来作为训练样本,同时构建了一个高低层特征融合的卷积神经网络模型,使用注意力机制来加强了对有用特征的学习,实验结果显示,该方法在MSTAR数据集上,表现了对不同目标型号的优秀识别效果。本文将检测具有相同背景的不同图像并找到图像中的红色圆圈目标,脚本介绍如下:

fitellipse.m -- 最小二乘法用于将椭圆拟合到 2-D 数据。
fiterror.m -- 计算拟合椭圆的误差,返回值为 MSE。
plotellipse.m -- 绘制参数指定的椭圆。
imgread.m -- 批量读取图像。
label.m -- 标记二维数组中的连接组件。
props.m -- 获取从图像中提取的一些重要形状。
threeframe.m -- 使用三帧差分方法过滤目标并获取背景。

📚2 运行结果

 

 

 

 

 

 

 部分代码:

    Dict_build
    K=3;
    Collect=zeros(P_h*P_w,1);
    index=1;
    for i=1:S_h
       for j=1:S_w
            x=S(i,j,:);
           x=x(:);
          theta_b=OMP(x,Dict_b,K);
          gamma=OMP(x,Dict_t,K);
          n0=x'*(x-Dict_b*theta_b);
          n1=x'*(x-Dict_t*gamma);
          D=n0*(1/n1);
          Collect(index)=D;   %classfication result response
          index=index+1; 
      end;
    end;
    start_=0.2;step=0.2;end_=10;   % cycle Ranges
    num=(end_-start_)/step+1;
    coord=zeros(num,2);
    coord_index=1;
    MIN_DISTENCE=1000000;    %Record the optimal threshold
for threshold=start_:step:end_
    P_compare=zeros(P_h,P_w);
    for i=1:S_h
        for j=1:S_w
            if Collect(P_h*(i-1)+j)>threshold
                 P_compare(i,j)=1;
            end;
        end;
    end;
    sum_TP=0;    %True positive
    sum_FP=0;    %False positive
    sum_FN=0;    %False negative
    sum_TN=0;    %True negative
    for i=1:P_h
     for j=1:P_w
            if P_compare(i,j)==1&&PlaneGT(i,j)==1
             sum_TP=sum_TP+1;
            elseif P_compare(i,j)==0&&PlaneGT(i,j)==1
             sum_FN=sum_FN+1;
            elseif P_compare(i,j)==0&&PlaneGT(i,j)==0
             sum_TN=sum_TN+1;
            elseif P_compare(i,j)==1&&PlaneGT(i,j)==0
             sum_FP=sum_FP+1;
           end;
     end;
    end;
    FPR=sum_FP/(sum_FP+sum_TN);    %False positive rate
    TPR=sum_TP/(sum_TP+sum_FN);    %True positive rate
    distence=(FPR)^2+(1-TPR)^2;
    if distence<MIN_DISTENCE
        MIN_DISTENCE=distence;
        BEST_THRESHOLD=threshold;
    end;
    coord(coord_index,1)=FPR;
    coord(coord_index,2)=TPR;
    coord_index=coord_index+1;
end;
%ROC curve
X=coord(:,1);
Y=coord(:,2);
figure;
plot(X,Y),xlabel('FPR'),ylabel('TPR');%Plot ROC curve

  P_compare=zeros(S_h,S_w);
    for i=1:S_h
        for j=1:S_w
            if Collect(P_h*(i-1)+j)>BEST_THRESHOLD
                 P_compare(i,j)=1;
            end;
        end;
    end;
    
%% Plot
figure
subplot(1,2,1);
imshow(PlaneGT),title('Standard image');
subplot(1,2,2);
imshow(P_compare),title('Test results');

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]冯博迪,杨海涛,王晋宇,李高源,张长弓.基于数据融合的SAR图像目标识别算法[J].计算机系统应用,2022,31(12):342-349.DOI:10.15888/j.cnki.csa.008560.

[2]王曦. 基于深度学习的SAR图像目标识别方法研究[D].电子科技大学,2022.DOI:10.27005/d.cnki.gdzku.2022.002589.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值