在数据分析中,订单量下降是一个常见的问题,它可能由多种因素引起,包括版本更新、活动影响、服务端问题、用户行为变化、外部环境变化等。为了有效排查订单量下降的原因,需要从多个维度进行系统性分析。
订单量下降如何排查?比如日活用户量下降、登录用户数下降、视频网站的观看用户数下降等,针对重点指标的分析,是数据分析师必备的一项技能。
一、订单量下降的排查步骤
在实际操作中,订单量下降的排查通常包括以下几个步骤:
首先,确认数据的准确性,确保数据来源可靠;
其次,分析订单量下降的时间段,判断是否为周期性波动或异常事件;
接着,从用户行为、产品、渠道、服务端等多个维度进行细分分析,找出问题的关键点;
最后,结合业务逻辑和数据趋势,提出合理的解释和改进措施。
通过这一系列步骤,可以系统性地解决订单量下降的问题,为企业的决策提供有力支持。
例:有一家金融产品类电商App,下图是近20天的订单数量情况。
这种订单数的趋势图很普遍,这里简单解读一下表面数据。
绿框(6月5日-6日)对应的订单数量是小峰值,主要受非工作日影响(周末网购的人多)。
黄框(6月9日-10日)对应的订单数量有较大幅度的增长,主要受运营的促销活动拉升所致。
那么红框(6月19日)对应的订单数量为什么突然下降了呢?
二、订单量下降的分析思路
进行数据分析之前,需要对业务背景有所了解,明确数据分析目的及数据分析框架。
从实际操作经验来看,一般有如下三种判定方向:
1. App是否发布了新版本?
App发布新版本的时候,一般是出Bug的高概率期。如果订单量下降的时间与发版时间一致,那么拉出各版本订单数量的趋势图,可以排除是否为版本的问题。
如果查出来的数据为,红框(6月19日)全量4.0版本,导致3.0版本的订单量骤降,但4.0版本的订单量没有跟上来,可以初步判断是新版本的问题,接下来可以在客户端开发系统进行排查。
2. 金融产品销售是否受活动影响?
从上面的趋势图中可以看见,一版周末的订单数量,环比绿框(6月5日-6日)日均下降(约10%),为什么排查呢?
因为黄框(6月9日-10日)为App的金融运营活动期,客户提前申购了,活动后销量下降属于正常情况。但是红框(6月19日)的订单量不及一般周末水平,明显低于正常水平,需要排查。
3. App服务端是否有策略调整?
App服务端有时会不定期修补Bug或者优化原策略,导致数据流出现问题。比如客户刷新页面无产品信息、服务响应变慢等,都会影响用户体验,影响金融产品申购量,或是推荐侧对算法做了更新,影响商品的排序,进而影响用户的点击率,影响申购转化率。
这种情况下可以拉出每小时的申购单数量,确定下降是否出现在某个时间点后,是否与前述事件吻合,以排除App服务端的影响。
如果红框(6月19日)的数据从当日下午2点开始,较前日下降,与App服务端策略的更新时间吻合,那么可以排查这部分的问题。
4. 关于其他数据分析模型的排查思路
一般来说大部分的指标波动可以通过上述方法定位到原因,其他情况可以通过数据分析模型辅助排查。比如AARRR漏斗转化率是否有变化,排查各个环节之间的转化率是否与近期平均数差距较大,可以确定某个环节出现的变动情况。
排查问题的核心点就是细节维度拆分数据。通过系统性的数据分析和多维度的业务洞察,可以有效识别问题的根源,并制定科学的解决方案。对于数据分析师而言,掌握订单量下降的排查方法不仅有助于提升工作效率,还能为企业提供更精准的决策支持。在实际工作中,应结合具体业务场景,灵活运用数据分析工具和方法,以实现最佳的排查效果。
CDA数据分析师在各行业的数据岗中认可度非常高,一般都要求考过CDA数据分析师二级,CDA二级中包含了模型搭建的详细内容,对于数据岗的工作来说特别有帮助。