完全背包问题(二维数组)

这篇博客介绍了完全背包问题的动态规划解决方案,通过对比01背包,详细阐述了完全背包问题的算法分析、数据存储、dp数组含义、递推公式、初始化和填表过程,并提供了C++实现的AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过三天的发文章,终于稍微弄明白MarkdownMarkdownMarkdown了,接下来话不多说,直接干正事。
前两篇文章分别和大家讲了一下01背包的两种做法,感兴趣的可以去看看。
今天和大家分享一下完全背包问题的解题思路(二维数组)。
本文在写完全背包的解题方法时会与01背包做对比
题目如下:
【题目描述】
设有nnn种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为MMM,今从nnn种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于MMM,而价值的和为最大。

【输入】
第一行:两个整数,MMM(背包容量,M≤200M\le200M200)和N(物品数量,N≤30N\le30N30);

第2…N+1行:每行二个整数Wi,CiW_i,C_iWi,Ci,表示每个物品的重量和价值。

【输出】
仅一行,一个数,表示最大总价值。

【输入样例】

10 4
2 1
3 3
4 5
7 9

【输出样例】

max=12

题目分析

【算法分析】

这道题和01背包差不多,只不过每种物品的数量变成了无限个,所以依然用动态规划算法求解。

【数据存储】

和01背包一样,m和n都是用两个变量储存即可,每个物品还是有两个值需储存,所以依然要用结构体。

【dp数组含义】

我们知道,01背包时dp[i][j]指的是第i件物品装在背包容量为j的背包里时的最大价值,那其实完全背包中dp数组的含义是 差不多的

### C++ 实现完全背包问题二维数组方法 在解决完全背包问题时,可以利用动态规划的思想来构建解决方案。对于完全背包问题,通常会定义一个二维数组 `dp[i][j]` 表示从前 `i` 个物品中选取若干件放入容量为 `j` 的背包所能获得的最大价值[^3]。 以下是基于 C++ 编写的完全背包问题二维数组实现代码: ```cpp #include <iostream> #include <vector> using namespace std; int main() { int N, V; // 物品数量N 和 背包总容量V cin >> N >> V; vector<int> weight(N + 1); // 存储每个物品的重量 vector<int> value(N + 1); // 存储每个物品的价值 for (int i = 1; i <= N; ++i) { // 输入物品的重量和价值 cin >> weight[i] >> value[i]; } // 创建二维 DP 数组 vector<vector<int>> dp(N + 1, vector<int>(V + 1, 0)); // 动态转移方程 for (int i = 1; i <= N; ++i) { for (int j = 0; j <= V; ++j) { if (j >= weight[i]) { // 如果当前背包容量能放下第i个物品 dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]); } else { dp[i][j] = dp[i - 1][j]; // 当前背包无法放置该物品 } } } cout << "最大价值:" << dp[N][V] << endl; // 输出最终结果 return 0; } ``` #### 解析 上述代码的核心逻辑在于通过两层嵌套循环完成状态转移: - 外层循环遍历每一个物品 `i`。 - 内层循环遍历背包容量 `j`,并判断是否能够加入当前物品以获取更大的价值。 - 对于每种情况,取两种决策中的较大者:要么不放当前物品 (`dp[i-1][j]`);要么放入当前物品 (`dp[i][j-weight[i]] + value[i]`)。 此方法的时间复杂度为 O(N*V),空间复杂度同样为 O(N*V)[^3]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值